Seasonal variations of mode-1 M2 internal tides observed by satellite altimetry

Author(s):  
Zhongxiang Zhao

<p>The seasonal variations of M<sub>2</sub> internal tides is investigated using 25 years of satellite altimetric sea surface height measurements from 1992--2017. The satellite data are divided into four seasonal subsets, from which four seasonal M<sub>2</sub> internal tide models are constructed. This study employs a new mapping technique that combines along-track spatial filtering, harmonic analysis, plane wave analysis, and two-dimensional spatial filtering. The vector mean of the four seasonal models yields the seasonal-mean model, which is equivalent to the 25-year-coherent model constructed directly using all the data. The seasonal models have larger errors than the seasonal-mean model, because the seasonally-subsetted data sets are short. Two seasonally-variable models are derived: The first model is a step function of the four seasonal models (phase-variable, amplitude-variable); The second model is same as the first one but that the amplitude is from the seasonal-mean model (phase-variable, amplitude-invariable). All these models are evaluated using independent CryoSat-2 data. Each seasonal model reduces most variance in its own season and least variance in its opposite season. Based on globally-integrated variance reductions, the two seasonally-variable models reduce 13% and 23% more variance than the seasonal models, respectively. The seasonal-mean model can reduce 27% more variance, thanks to its small model errors. However, the seasonally-variable models are better than the seasonal-mean model in the tropical zone, where the seasonal signals are larger than model errors. The satellite results reveal that M<sub>2</sub> internal tides are subject to seasonal variation in varying degrees and that the seasonal variation is a function of location. Large variations in amplitude and phase mainly occur in the tropical zone. The seasonal phase variations are mainly caused by the seasonal variations of ocean stratification and internal tide speed. Significant amplitude variations are usually associated with strong internal tides such as from the Luzon and Lombok Straits, and in the Amazon River plume, the western Pacific and the Arabian Sea. At higher latitudes such as the North Pacific and North Atlantic Oceans, the seasonal variations are weak but detectable. The seasonally-variable models can partly account for the seasonal variations of internal tides, in particular, in the tropical zone.  A major challenge is the large model errors, which will be further reduced with the accumulation of new altimeter missions and data (e.g., SWOT).</p>

Author(s):  
Zhongxiang Zhao

AbstractThe seasonal variability of mode-1 M2 internal tides is investigated using 25 years of multi-satellite altimeter data from 1992–2017. Four seasonal internal tide models are constructed using seasonally-subsetted altimeter data and World Ocean Atlas seasonal climatologies. This work is made possible by a newly-developed mapping procedure that can significantly suppress model errors. Seasonal-mean and seasonally-variable internal tide models are derived from the four seasonal models. All the models are inter-compared and evaluated using independent CryoSat-2 data. The seasonal-mean model is overall the best model because averaging the four seasonal models further reduces model errors. The seasonally-variable models are better in the tropical zone, where large seasonal signals may overcome model errors. Each seasonal model works best in its own season and worst in its opposite season. These internal tide models reveal that mode-1 M2 internal tides are subject to significant seasonal variability and their seasonal variations are a function of location. Large seasonal variations dominantly occur in the tropical zone, where the World Ocean Atlas climatology shows strong seasonal variations in ocean stratification. Seasonal phase variations are obtained from the directionally-decomposed internal tide components. They are dominantly ±60° at the equator and up to ±120° in the central Arabian Sea. Incoherence caused by seasonal phase variations is usually <10%, but may be up to 40–50% in the tropical zone.


2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.


2021 ◽  
Author(s):  
Kun Liu ◽  
Zhongxiang Zhao

&lt;p&gt;The disintegration of the equatorward-propagating K&lt;sub&gt;1&lt;/sub&gt; internal tide in the South China Sea (SCS) by parametric subharmonic instability (PSI) at its critical latitude of 14.52&amp;#186;N is investigated numerically. The multiple-source generation and long-range propagation of K&lt;sub&gt;1&lt;/sub&gt; internal tides are successfully reproduced. Using equilibrium analysis, the internal wave field near the critical latitude is found to experience two quasi-steady states, between which the subharmonic waves develop constantly. The simulated subharmonic waves agree well with classic PSI theoretical prediction. The PSI-induced near-inertial waves are of half the K&lt;sub&gt;1&lt;/sub&gt; frequency and dominantly high modes, the vertical scales ranging from 50 to 180 m in the upper ocean. From an energy perspective, PSI mainly occurs in the critical latitudinal zone from 13&amp;#8211;15&amp;#186;N. In this zone, the incident internal tide loses ~14% energy in the mature state of PSI. PSI triggers a mixing elevation of O(10&lt;sup&gt;-5&lt;/sup&gt;&amp;#8211;10&lt;sup&gt;-4&lt;/sup&gt; m&lt;sup&gt;2&lt;/sup&gt;/s) in the upper ocean at the critical latitude, which is several times larger than the background value. The contribution of PSI to the internal tide energy loss and associated enhanced mixing may differ regionally and is closely dependent on the intensity and duration of background internal tide. The results elucidate the far-field dissipation mechanism by PSI in connecting interior mixing with remotely generated K&lt;sub&gt;1&lt;/sub&gt; internal tides in the Luzon Strait.&lt;/p&gt;


2021 ◽  
Author(s):  
Inger Bij de Vaate ◽  
Henrique Guarneri ◽  
Cornelis Slobbe ◽  
Martin Verlaan

&lt;p&gt;The existence of seasonal variations in major tides has been recognized since decades. Where Corkan (1934) was the first to describe the seasonal perturbation of the M2 tide, many others have studied seasonal variations in the main tidal constituents since. However, most of these studies are based on sea level observations from tide gauges and are often restricted to coastal and shelf regions. Hence, observed seasonal variations are typically dominated by local processes and the large-scale patterns cannot be clearly distinguished. Moreover, most tide models still perceive tides as annually constant and seasonal variation in tides is ignored in the correction process of satellite altimetry. This results in reduced accuracy of obtained sea level anomalies. &lt;/p&gt;&lt;p&gt;To gain more insight in the large-scale seasonal variations in tides, we supplemented the clustered and sparsely distributed sea level observations from tide gauges by the wealth of data from satellite altimeters. Although altimeter-derived water levels are being widely used to obtain tidal constants, only few of these implementations consider seasonal variation in tides. For that reason, we have set out to explore the opportunities provided by altimeter data for deriving seasonal modulation of the main tidal constituents. Different methods were implemented and compared for the principal tidal constituents and a range of geographical domains, using data from a selection of satellite altimeters. Specific attention was paid to the Arctic region where seasonal variation in tides was expected to be significant as a result of the seasonal sea ice cycle, yet data availability is particularly limited. Our study demonstrates the potential of satellite altimetry for the quantification of seasonal modulation of tides and suggests the seasonal modulation to be considerable. Already for M2 we observed changes in tidal amplitude of the order of decimeters for the Arctic region, and centimeters for lower latitude regions.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;div&gt;Corkan, R. H. (1934). An annual perturbation in the range of tide. &lt;em&gt;Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character&lt;/em&gt;, &lt;em&gt;144&lt;/em&gt;(853), 537-559.&lt;/div&gt;


2021 ◽  
Author(s):  
Eugene Morozov ◽  
Dmitry Frey ◽  
Elizaveta Khimchenko

&lt;p&gt;Observations of tidal internal waves in the Bransfield Strait, Antarctica, are analyzed. The measurements were carried out for 14 days on a moored station equipped with five autonomous temperature and pressure sensors. The mooring was deployed on the slope of Nelson Island (South Shetland Islands archipelago) over a depth of 70 m at point 62&amp;#176;21&amp;#42892; S, 58&amp;#176;49&amp;#42892; W. Analysis is based on the fluctuations of isotherms. &amp;#160;Vertical displacements of temperature revealed that strong internal vertical oscillations up to 30&amp;#8211;40 m are caused by the diurnal internal tide. Spectral analysis of vertical displacements of the 0.9&amp;#176;C isotherm showed a clear peak at a period of 24 h. It is known that the tides in the Bransfield Strait are mostly mixed diurnal and semidiurnal, but during the Antarctic summer, diurnal tide component may intensify. The velocity ellipses of the barotropic tidal currents were estimated using the global tidal model TPXO9.0. It was found that tidal ellipses rotate clockwise with a period of 24 h and anticlockwise with a period of 12 h. The waves are forced due to the interaction of the barotropic tide with the bottom topography. Diurnal internal tides do not develop at latitudes higher than 30&amp;#186; over flat bottom. The research was supported by RFBR grant 20-08-00246.&lt;/p&gt;


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


2020 ◽  
Vol 50 (11) ◽  
pp. 3165-3188
Author(s):  
Pengyang Song ◽  
Xueen Chen

AbstractA global ocean circulation and tide model with nonuniform resolution is used in this work to resolve the ocean circulation globally as well as mesoscale eddies and internal tides regionally. Focusing on the northwest Pacific Ocean (NWP, 0°–35°N, 105°–150°E), a realistic experiment is conducted to simulate internal tides considering the background circulation and stratification. To investigate the influence of a background field on the generation and propagation of internal tides, idealized cases with horizontally homogeneous stratification and zero surface fluxes are also implemented for comparison. By comparing the realistic cases with idealized ones, the astronomical tidal forcing is found to be the dominant factor influencing the internal tide conversion rate magnitude, whereas the stratification acts as a secondary factor. However, stratification deviations in different areas can lead to an error exceeding 30% in the local internal tide energy conversion rate, indicating the necessity of a realistic stratification setting for simulating the entire NWP. The background shear is found to refract propagating diurnal internal tides by changing the effective Coriolis frequencies and phase speeds, while the Doppler-shifting effect is remarkable for introducing biases to semidiurnal results. In addition, nonlinear baroclinic tide energy equations considering the background circulation and stratification are derived and diagnosed in this work. The mean flow–baroclinic tide interaction and nonlinear energy flux are the most significant nonlinear terms in the derived equations, and nonlinearity is estimated to contribute approximately 5% of the total internal tide energy in the greater Luzon Strait area.


2020 ◽  
Author(s):  
Casimir de Lavergne ◽  
Clément Vic ◽  
Gurvan Madec ◽  
Fabien Roquet ◽  
Amy Waterhouse ◽  
...  

&lt;p&gt;Vertical mixing is often regarded as the Achilles&amp;#8217; heel of ocean models. In particular, few models include a comprehensive and energy-constrained parameterization of mixing by internal ocean tides. Here, we present an energy-conserving mixing scheme which accounts for the local breaking of high-mode internal tides and the distant dissipation of low-mode internal tides. The scheme relies on four static two-dimensional maps of internal tide dissipation, constructed using mode-by-mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three-dimensional map of dissipation which compares well with available microstructure observations and with upper-ocean finestructure mixing estimates. Implemented in the NEMO global ocean model, the scheme improves the representation of deep water-mass transformation and obviates the need for a constant background diffusivity.&lt;/p&gt;


2017 ◽  
Author(s):  
Ahmadreza Argha ◽  
Andrey Savkin ◽  
Siaw-Teng Liaw ◽  
Branko George Celler

BACKGROUND Seasonal variation has an impact on the hospitalization rate of patients with a range of cardiovascular diseases, including myocardial infarction and angina. This paper presents findings on the influence of seasonal variation on the results of a recently completed national trial of home telemonitoring of patients with chronic conditions, carried out at five locations along the east coast of Australia. OBJECTIVE The aim is to evaluate the effect of the seasonal timing of hospital admission and length of stay on clinical outcome of a home telemonitoring trial involving patients (age: mean 72.2, SD 9.4 years) with chronic conditions (chronic obstructive pulmonary disease coronary artery disease, hypertensive diseases, congestive heart failure, diabetes, or asthma) and to explore methods of minimizing the influence of seasonal variations in the analysis of the effect of at-home telemonitoring on the number of hospital admissions and length of stay (LOS). METHODS Patients were selected from a hospital list of eligible patients living with a range of chronic conditions. Each test patient was case matched with at least one control patient. A total of 114 test patients and 173 control patients were available in this trial. However, of the 287 patients, we only considered patients who had one or more admissions in the years from 2010 to 2012. Three different groups were analyzed separately because of substantially different climates: (1) Queensland, (2) Australian Capital Territory and Victoria, and (3) Tasmania. Time series data were analyzed using linear regression for a period of 3 years before the intervention to obtain an average seasonal variation pattern. A novel method that can reduce the impact of seasonal variation on the rate of hospitalization and LOS was used in the analysis of the outcome variables of the at-home telemonitoring trial. RESULTS Test patients were monitored for a mean 481 (SD 77) days with 87% (53/61) of patients monitored for more than 12 months. Trends in seasonal variations were obtained from 3 years’ of hospitalization data before intervention for the Queensland, Tasmania, and Australian Capital Territory and Victoria subgroups, respectively. The maximum deviation from baseline trends for LOS was 101.7% (SD 42.2%), 60.6% (SD 36.4%), and 158.3% (SD 68.1%). However, by synchronizing outcomes to the start date of intervention, the impact of seasonal variations was minimized to a maximum of 9.5% (SD 7.7%), thus improving the accuracy of the clinical outcomes reported. CONCLUSIONS Seasonal variations have a significant effect on the rate of hospital admission and LOS in patients with chronic conditions. However, the impact of seasonal variation on clinical outcomes (rate of admissions, number of hospital admissions, and LOS) of at-home telemonitoring can be attenuated by synchronizing the analysis of outcomes to the commencement dates for the telemonitoring of vital signs. CLINICALTRIAL Australian New Zealand Clinical Trial Registry ACTRN12613000635763; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364030&isReview=true (Archived by WebCite at http://www.webcitation.org/ 6xLPv9QDb)


Sign in / Sign up

Export Citation Format

Share Document