Risk of drought for winter cereals in Castilla y León (N Spain) under current and future climate

Author(s):  
Margarita Ruiz-Ramos ◽  
Alfredo Rodríguez ◽  
Antonio Saa-Requejo ◽  
José Luis Valencia ◽  
María Villeta ◽  
...  

<p>Due to the latitude of the Iberian Peninsula, it is repeatedly affected by significant drought episodes. This has been the case of the events observed in the years 1979-1983, 1992-1995, 2005, or 2016-2017. In the historical period, the occurrence of droughts in the Peninsula has been closely linked to the natural variability of the climate itself, which is modulated by multiple factors, such as the surface temperature of the oceans, the polar ice cover, the Oscillation of the North Atlantic or the stratospheric circulation itself (e.g. Lorenzo et al., 2011). Within the context of global warming, the projected increase in temperatures is expected to have a direct impact on the recurrence and severity of droughts on the Iberian Peninsula.</p><p>Therefore, the objective of this work is to study the relationships between climatic variables that indicate a high risk of yield loss of rainfed cereals affected by drought, and their projection in the immediate future. This work has been framed in the area of ​​Castilla y León in the North Plateau of Spain.</p><p>The selected methodology consisted of the design of agrometeorological indices that allowed capturing the behaviour of the most relevant variables related to the response of the cereals to drought in the study area. For this purpose, meteorological station observations, observations in grid, and simulations of present and future climate generated by regional climate simulation models (EUROCORDEX RCMs, van Meijgaard et al., 2014), which were used to compute the indices after a bias correction. Finally, results maps were obtained.</p><p>A total of nine temperature and/or precipitation indices were designed and calculated for periods physiologically meaningful for the crop, both under present and future climate. A discussion of the potential consequences of the indices changes on winter cereal yields in Castilla y León was addressed.</p><p><strong>Acknowledgements</strong></p><p>Authors are grateful to Agroseguro funding through the project “Drought events in winter cereals in Castilla-León: risk analysis, trends and climate change”.</p><p><strong>References</strong></p><p>Lorenzo, M.N., Taboada, J.J., Iglesias, I., Gómez-Gesteira, M., 2011. Predictability of the spring rainfall in Northwestern Iberian Peninsula from sea surfaces temperature of ENSO areas. Clim. Change 107 (3–4), 329–341.</p><p>van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EUROCORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.</p>

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-Woo Lee ◽  
Suryun Ham ◽  
Song-You Hong ◽  
Kei Yoshimura ◽  
Minsu Joh

This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM), namely, the Global/Regional Integrated Model System (GRIMs), Regional Model Program (RMP). The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070) simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.


2021 ◽  
Author(s):  
Cristina Andrade ◽  
Joana Contente

<p>Projections of the Köppen-Geiger climate classification under future climate change for the Iberian Peninsula (IP) are investigated by using a seven-ensemble mean of regional climate models (RCMs) attained from EURO-CORDEX. Maps with predicted future scenarios for temperature, precipitation and Köppen-Geiger classification are analyzed under RCP4.5 and RCP8.5 in Iberia. Widespread statistically significant shifts in temperature, precipitation and climate regimes are projected between 2041 and 2070, with higher expression under RCP8.5. An overall increase of temperatures and a decrease of precipitation in the south-southeast is predicted. Of the two climate types dry (B) and temperate (C), the dominant one was C in 86% of the Iberian territory for 1961-1990, predicted to decrease by 8.0% towards 2041-2070 under RCP4.5 (9.1% under RCP8.5). The hot-summer Mediterranean climate (CSa) will progressively replaces CSb (warm-summer) type towards north in the northwestern half of Iberia until 2070. This shift, depicted by the SSIM index, is noticeable in Portugal with a projected establishment of the CSa climate by 2041-2070. A predicted retreat of humid subtropical (Cfa) and temperate oceanic (Cfb) areas in the northeast towards Pyrenees region is noteworthy, alongside an increase of desert (BW) and semi-desert (BS) climates (7.8% and 9%) that progressively sets in the southeast (between Granada and Valencia). Climate types BSh and BWh (hot semi-desert and hot-desert, respectively), non-existent in 1961-1990 period, are projected to represent 2.8% of territory in 2041-2070 under RCP4.5 (5% under RCP8.5). The statistically significant projected changes hint at the disappearance of some vegetation species in certain regions of Iberia, with an expected increase of steppe, bush, grassland and wasteland vegetation cover, typical of dry climates in the southeast.</p><p><strong>Funding:</strong> This research was funded by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project <strong>UIDB/04033/2020.</strong></p>


2012 ◽  
Vol 93 (9) ◽  
pp. 1337-1362 ◽  
Author(s):  
Linda O. Mearns ◽  
Ray Arritt ◽  
Sébastien Biner ◽  
Melissa S. Bukovsky ◽  
Seth McGinnis ◽  
...  

The North American Regional Climate Change Assessment Program (NARCCAP) is an international effort designed to investigate the uncertainties in regional-scale projections of future climate and produce highresolution climate change scenarios using multiple regional climate models (RCMs) nested within atmosphere–ocean general circulation models (AOGCMs) forced with the Special Report on Emission Scenarios (SRES) A2 scenario, with a common domain covering the conterminous United States, northern Mexico, and most of Canada. The program also includes an evaluation component (phase I) wherein the participating RCMs, with a grid spacing of 50 km, are nested within 25 years of National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis II. This paper provides an overview of evaluations of the phase I domain-wide simulations focusing on monthly and seasonal temperature and precipitation, as well as more detailed investigation of four subregions. The overall quality of the simulations is determined, comparing the model performances with each other as well as with other regional model evaluations over North America. The metrics used herein do differentiate among the models but, as found in previous studies, it is not possible to determine a “best” model among them. The ensemble average of the six models does not perform best for all measures, as has been reported in a number of global climate model studies. The subset ensemble of the two models using spectral nudging is more often successful for domain-wide root-mean-square error (RMSE), especially for temperature. This evaluation phase of NARCCAP will inform later program elements concerning differentially weighting the models for use in producing robust regional probabilities of future climate change.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2425
Author(s):  
Muhammad Rehan Anis ◽  
David J. Sauchyn

Changes in temperature and precipitation are expected to alter the seasonal distribution of surface water supplies in snowmelt-dominated watersheds. A realistic assessment of future climate change and inter-annual variability is required to meet a growing demand for water supplies in all major use sectors. This study focuses on changes in climate and runoff in the North Saskatchewan River Basin (NSRB) above Edmonton, AB, Canada, using the MESH (Modélisation Environnementale communautaire—Surface Hydrology) model. The bias-corrected ensemble of Canadian Regional Climate Model (CanRCM4) data is used to drive MESH for two 60-year time periods, a historical baseline (1951–2010) and future projection (2041–2100), under Representative Concentration Pathway (RCP) 8.5. The precipitation is projected to increase in every season, there is significant trend in spring (0.62) and fall (0.41) and insignificant in summer (0.008). Winter extreme minimum temperature and summer extreme maximum temperature are increasing by 2–3 °C in the near future and 5–6 °C in the far future. Annual runoff increases by 19% compared to base period. The results reveal long-term hydrological variability enabling water resource managers to better prepare for climate change and extreme events to build more resilient systems for future water demand in the NSRB.


Author(s):  
Christian Philipp Lackner ◽  
Bart Geerts ◽  
Yonggang Wang

AbstractA high-resolution (4 km) regional climate simulation conducted with the Weather Research and Forecast (WRF) model is used to investigate potential impacts of global warming on skiing conditions in the interior western United States (IWUS). Recent past and near-future climate conditions are compared. The past climate period is from November 1981 to October 2011. The future climate applies to a 30-year period centered on 2050. A pseudo global warming approach is used, with the driver re-analysis dataset perturbed by the CMIP5 ensemble mean model guidance. Using the 30-year retrospective simulation, a vertical adjustment technique is used to determine meteorological parameters in the complex terrain where ski areas are located. For snow water equivalent (SWE), Snow Telemetry sites close to ski areas are used to validate the technique and apply a correction to SWE in ski areas. The vulnerability to climate change is assessed for 71 ski areas in the IWUS considering SWE, artificially produced snow, temperature, and rain. 20 of the ski areas will tend to have fewer than 100 days per season with sufficient natural and artificial snow for skiing. These ski areas are located at either low elevations or low latitudes making these areas the most vulnerable to climate change. Throughout the snow season, natural SWE decreases significantly at the low elevations and low latitudes. At higher elevations changes in SWE are predicted to not be significant in the mid-season. In mid-February, SWE decreases by 11.8% at the top elevations of ski areas while it decreases by 25.8% at the base elevations.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


Sign in / Sign up

Export Citation Format

Share Document