scholarly journals Modelling winter storm impacts on insured claim ratios of residential buildings in German administrative districts

2021 ◽  
Author(s):  
Andreas Trojand ◽  
Nico Becker ◽  
Henning Rust

<p>Severe winter storms are one of the most damaging natural hazards for European residential buildings. Previous studies mainly focused on the loss ratio (loss value / total insured sum) as a monetary value for damages. In this study the focus is on the claim ratio (number of claims / number of contracts), which is derived from a storm loss dataset provided by the German Insurance Association. Due to its magnitude, the claim ratio might be a more intuitive parameter for the use in impact-based warnings than the loss ratio.</p><p>In a first step, loss ratios and claim ratios in German administrative districts are compared to investigate differences and similarities between the two variables. While there is no significant change in the ratio between claim ratio and loss ratio with increasing wind speeds, a tendency for lower loss ratios in urban areas can be confirmed.</p><p>In a second step, a generalized linear model for daily claim ratios is developed using daily maximum wind gust (ERA5) and different non-meteorological indicators for vulnerability and exposure as predictor variables. The non-meteorological predictors are derived from the Census 2011. They include information about the district-average construction years, the number of apartments per buildings and others to get a better understanding of these factors concerning the number of buildings affected by windstorms. The modelling procedure is divided into two steps. First, a logistic regression model is used to model the probabilty claim ratios larger than zero. Second, generalized linear models with different link functions are compared regarding their ability to predict claim ratios larger than zero. In a cross-validation setting a criteria for model selection is implemented and the models of both steps are verified. Both steps show an improvement over the climatological forecast and in both cases the addition of data for vulnerability and exposure leads to in decrease of the mean squared error. </p>

2003 ◽  
Vol 3 (6) ◽  
pp. 725-732 ◽  
Author(s):  
M. Klawa ◽  
U. Ulbrich

Abstract. A storm loss model for Germany is presented. Input data to the model are the daily maximum gust wind speeds measured at stations distributed over the country. The individual daily peak gust values are scaled with the local climatological upper 2% quantile at each station. This scaling serves to take local conditions at the stations into account, and thus permits a simple spatial interpolation of the storm field. The next step is the computation of a loss index for each storm. It is based on the excess of (scaled) wind speed over the upper 2% quantile, and on population numbers in the individual districts within Germany, with the latter serving as a proxy for the spatial distribution of values that could be affected by a storm. Using wind speeds in excess of the percentile value also serves to take spatial heterogeneity of vulnerability against storms into account. The aggregated storm index gives an estimate of the severity of an individual storm. Finally, the relation between actual loss produced by a storm and the index is estimated using published annual insurance loss due to windstorm in Germany. Index values are accumulated for each year, and the relation to actual loss is computed. The average ratio for the whole reference period is eventually used. It is shown that the interannual variability of storm-related losses can be reproduced with a correlation coefficient of r = 0.96, and even individual storm damages can be estimated. Based on these evaluations we found that only 50 storms account for about 80% of insured storm losses between 1970 and 1997.


2020 ◽  
Vol 17 (1) ◽  
pp. 41
Author(s):  
UMMU SHOLEHAH MOHD NOR

High residential living in Malaysia has not been widely given a significant emphasises in literature despite its increasing scale and significance in the real estate market. The significance of high rise is mainly due the increasing rate of migration from rural to urban. It is estimated a total of 77.2 percent of the Malaysian population lived in urban areas in 2020. Approximately, 30 percent of this urban population lives in strata housing. These percentages are predicted to continue to increase in the future. The emergence of high residential building has been argued as confronting various problems which has considerable impact on this life style. Satisfaction is an important outcome of living in one’s dwelling, although it is not the only consideration. High residential building in Malaysia encountered numerous problems in term of management aspects, legislation aspects, and residents’ satisfaction. The purpose of this paper is to investigate the tenants’ satisfaction living in high residential buildings in Klang Valley. The questionnaires survey is conducted amongst 276 tenants at low cost and medium cost HRB using random sampling in HRB located at areas under jurisdiction Dewan Bandaraya Kuala Lumpur (DBKL), Majlis Bandaraya Subang Jaya (MBSJ), Majlis Bandaraya Shah Alam (MBSA), Majlis Bandaraya Subang Jaya (MBSJ), Majlis Perbandaran Selayang (MPS) and Majlis Perbandaran Ampang Jaya (MPAJ). The result from this study shows that tenant in medium cost residential building are more satisfied in term of facilities and management as compared to tenants in low cost residential building. Tenants also not disclosed to the existing act and procedure related to high residential building. In conclusion, this study suggested the Local Authority to emphasise the role of tenant. These recommendation hopefully will increase the level of satisfaction amongst the residents in HRB.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


2021 ◽  
pp. 1420326X2110130
Author(s):  
Manta Marcelinus Dakyen ◽  
Mustafa Dagbasi ◽  
Murat Özdenefe

Ambitious energy efficiency goals constitute an important roadmap towards attaining a low-carbon society. Thus, various building-related stakeholders have introduced regulations targeting the energy efficiency of buildings. However, some countries still lack such policies. This paper is an effort to help bridge this gap for Northern Cyprus, a country devoid of building energy regulations that still experiences electrical energy production and distribution challenges, principally by establishing reference residential buildings which can be the cornerstone for prospective building regulations. Statistical analysis of available building stock data was performed to determine existing residential reference buildings. Five residential reference buildings with distinct configurations that constituted over 75% floor area share of the sampled data emerged, with floor areas varying from 191 to 1006 m2. EnergyPlus models were developed and calibrated for five residential reference buildings against yearly measured electricity consumption. Values of Mean Bias Error (MBE) and Cumulative Variation of Root Mean Squared Error CV(RMSE) between the models’ energy consumption and real energy consumption on monthly based analysis varied within the following ranges: (MBE)monthly from –0.12% to 2.01% and CV(RMSE)monthly from 1.35% to 2.96%. Thermal energy required to maintain the models' setpoint temperatures for cooling and heating varied from 6,134 to 11,451 kWh/year.


2021 ◽  
Vol 13 (12) ◽  
pp. 6753
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison

As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids.


2020 ◽  
Vol 12 (11) ◽  
pp. 1730 ◽  
Author(s):  
Gebhard Warth ◽  
Andreas Braun ◽  
Oliver Assmann ◽  
Kevin Fleckenstein ◽  
Volker Hochschild

Ongoing urbanization leads to steady growth of urban areas. In the case of highly dynamic change of municipalities, due to the rates of change, responsible administrations often are challenged or struggle with capturing present states of urban sites or accurately planning future urban development. An interest for urban planning lies on socio-economic conditions, as consumption and production of disposable goods are related to economic possibilities. Therefore, we developed an approach to generate relevant parameters for infrastructure planning by means of remote sensing and spatial analysis. In this study, the single building defines the spatial unit for the parameters. In the case city Belmopan (Belize), based on WorldView-1 data we manually define a city covering building dataset. Residential buildings are classified to eight building types which are locally adapted to Belmopan. A random forest (RF) classifier is trained with locally collected training data. Through household interviews focusing on household assets, income and educational level, a socio-economic point (SEP) scaling is defined, which correlates very well with the defined building typology. In order to assign socio-economic parameters to the single building, five socio-economic classes (SEC) are established based on SEP statistics for the building types. The RF building type classification resulted in high accuracies. Focusing on the three categories to describe residential socio-economic states allowed high correlations between the defined building and socio-economic points. Based on the SEP we projected a citywide residential socio-economic building classification to support supply and disposal infrastructure planning.


2015 ◽  
Vol 54 (3) ◽  
pp. 658-670 ◽  
Author(s):  
Jenny Lindén ◽  
Jan Esper ◽  
Björn Holmer

AbstractUrban areas are believed to affect temperature readings, thereby biasing the estimation of twentieth-century warming at regional to global scales. The precise effect of changes in the surroundings of meteorological stations, particularly gradual changes due to urban growth, is difficult to determine. In this paper, data from 10 temperature stations within 15 km of the city of Mainz (Germany) over a period of 842 days are examined to assess the connection between temperature and the properties of the station surroundings, considering (i) built/paved area surface coverage, (ii) population, and (iii) night light intensity. These properties were examined in circles with increasing radii from the stations to identify the most influential source areas. Daily maximum temperatures Tmax, as well as daily average temperatures, are shown to be significantly influenced by elevation and were adjusted before the analysis of anthropogenic surroundings, whereas daily minimum temperatures Tmin were not. Significant correlations (p < 0.1) between temperature and all examined properties of station surroundings up to 1000 m are found, but the effects are diminished at larger distance. Other factors, such as slope and topographic position (e.g., hollows), were important, especially to Tmin. Therefore, properties of station surroundings up to 1000 m from the stations are most suitable for the assessment of potential urban influence on Tmax and Tmin in the temperate zone of central Europe.


2015 ◽  
Vol 54 (7) ◽  
pp. 1393-1412 ◽  
Author(s):  
Dale T. Andersen ◽  
Christopher P. McKay ◽  
Victor Lagun

AbstractIn November 2008 an automated meteorological station was established at Lake Untersee in East Antarctica, producing a 5-yr data record of meteorological conditions at the lake. This dataset includes five austral summer seasons composed of December, January, and February (DJF). The average solar flux at Lake Untersee for the four years with complete solar flux data is 99.2 ± 0.6 W m−2. The mean annual temperature at Lake Untersee was determined to be −10.6° ± 0.6°C. The annual degree-days above freezing for the five years were 9.7, 37.7, 22.4, 7.0, and 48.8, respectively, with summer (DJF) accounting for virtually all of this. For these five summers the average DJF temperatures were −3.5°, −1.9°, −2.2°, −2.6°, and −2.5°C. The maximum (minimum) temperatures were +5.3°, +7.6°, +5.7°, +4.4°, and +9.0°C (−13.8°, −12.8°, −12.9°, −13.5°, and −12.1°C). The average of the wind speed recorded was 5.4 m s−1, the maximum was 35.7 m s−1, and the average daily maximum was 15 m s−1. The wind speed was higher in the winter, averaging 6.4 m s−1. Summer winds averaged 4.7 m s−1. The dominant wind direction for strong winds is from the south for all seasons, with a secondary source of strong winds in the summer from the east-northeast. Relative humidity averages 37%; however, high values will occur with an average period of ~10 days, providing a strong indicator of the quasi-periodic passage of storms across the site. Low summer temperatures and high wind speeds create conditions at the surface of the lake ice resulting in sublimation rather than melting as the main mass-loss process.


Author(s):  
Albert Utama ◽  
Sutarki Sutisna

The Living Bot is a project where future residential buildings will adapt to the times. In the coming year, the human population will continue to grow, so that it will use the land as a place for various needs such as shelter, activities, and other things. Along with this increase in human population, the land will also shrink while the land itself is needed so that humans can meet their food needs either from farming (plants), or through livestock (animal). Therefore, The Living Bot created a system in which human implementation begins to adapt to the life in which they live by implementing a residential system that can produce their own food with plantings that maximize vertical land. This form of shelter can be used as a system so that its application can be carried out. Adaptations that are carried out are by changing the lifestyle of humans to the use of technology. The lifestyle that must adapt is by farming, assisted by A.I. technology. because humans in urban areas do not have a background in growing a food crop. Therefore technology is present in helping urban communities, also assisted by modern planting methods such as using hydroponics, aquaponics, aeroponics, and indoor planting techniques assisted by artificial light such as LEDs. Keywords: Adaptation; Techonology Abstrak The Living Bot merupakan sebuah proyek dimana bangunan hunian pada masa depan akan beradaptasi dengan perkembangan zaman. Pada tahun yang akan datang, populasi manusia akan terus bertambah, sehingga akan menggunakan lahan sebagai tempat untuk berbagai macam kebutuhan seperti tempat tinggal, aktivitas, dan hal lainnya. Seiring dengan pertambahan populasi manusia ini, lahan juga akan semakin menyempit sedangkan lahan sendiri diperlukan agar manusia dapat memenuhi kebutuhan pangannya baik dari hasil bertani (tumbuh-tumbuhan), ataupun melalui peternakan (hewani). Maka dari itu The Living Bot membuat suatu sistem yaitu dimana implementasi manusia mulai beradaptasi dengan kehidupan tempat tinggalnya dengan menerapkan sistem hunian yang dapat menghasilkan makanannya sendiri dengan penanaman-penanaman yang memaksimalkan lahan secara vertikal.Bentuk hunian seperti ini dapat dijadikan sebuah sistem sehingga penerapannya dapat dilakukan di berbagai hunian Adaptasi yang dilakukan adalah dengan mengubah gaya hidup manusia sampai kepada pengunaan teknologi. Adapun gaya hidup yang harus beradaptasi adalah dengan bercocok tanam, dengan dibantu oleh teknologi A.I. karena manusia yang ada di perkotaan tidak memiliki latar belakang dalam menanam sebuah tanaman pangan. Maka dari itu teknologi hadir dalam membantu masyarakat kota, juga dibantu oleh metode menanam yang modern seperti menggunakan hidroponik, akuaponik, aeroponik, dan teknik penanaman indoor yang dibantu oleh cahaya buatan seperti LED.


2012 ◽  
Vol 64 (1) ◽  
pp. 17471 ◽  
Author(s):  
Kai Born ◽  
Patrick Ludwig ◽  
Joaquim G. Pinto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document