Desiccation of the TRAPPIST-1 Planets During Their Magma Ocean Phase

2020 ◽  
Author(s):  
Ludmila Carone ◽  
Patrick Barth ◽  
Rory Barnes ◽  
Lena Noack ◽  
Thomas Henning

<pre class="moz-quote-pre">The potentially habitable planets in the TRAPPIST-1 system (e,f,g) may have experienced a prolonged magma ocean phase during which volatiles were partitioned between the molten interior and the atmosphere. The duration of the magma ocean phase is determined by 1) the incident stellar radiation, 2) atmospheric heating due to the greenhouse effect, 3) water photolysis and hydrogen escape, 4) tidal heating, 5) radiogenic heating, and 6) the magma ocean’s initial temperature. We simulate these phenomena simultaneously with the VPLanet software package, including a new module called MagmOc that treats the thermal and geochemical evolution (water, O2, and CO2) of the magma ocean. We find the TRAPPIST-1 planets’ evolution depends on initial water content and distance from the host star. In a “dry” scenario (initial water content < 5TO, for planet g), the atmosphere after magma ocean solidification is desiccated and devoid of abiotically generated O2. In an “intermediate” scenario (initial water content between 5 and 50TO), the post magma ocean atmosphere still contains water. XUV photolysis of this water leads to abiotic O2 build-up. For “extremely wet” cases (initial water content > 50 TO) or extreme internal heating, the magma ocean lifetime can be extended and quench oxygen build up. The currently inferred high water content of the planets favors the extremely wet scenario for TRAPPIST-1 g and f, i.e. they likely ended their magma ocean state with large amounts of water vapor in their atmospheres but potentially avoid the build-up of large amounts of oxygen. TRAPPIST-1 e, on the other hand, could have experienced the intermediate scenario and is therefore even less likely to possess large amounts of abiotically created atmospheric O2.</pre>

2018 ◽  
Vol 38 (2) ◽  
pp. 167
Author(s):  
Lince Mukkun ◽  
Herianus J.D. Lalel ◽  
Yuliana Tandirubak

Maize is one of the important staple foods for people in Timor, East Nusa Tenggara Province, Indonesia. Subsistent farmers store the maize for their own consumption until the next harvest season, for seed and feed.  However, high initial water content of the kernel due to improper drying prior storage initiate serious damage and losses during the maize storage.  High water content promotes the growth of fungi and insects, and increase respiration rate, resulting in rapid deterioration of maize. The purpose of this study was to determine the initial moisture content that might minimize damage and losses of maize in the farmers’ storage, and to study the effects of some plant materials that are used to smoke corns before storage. The experiment was initiated by sun-drying the harvested corncobs for 0, 2, 4, 6, 8, and 10 days (6 hours a day). This experiment was designed using Completely Randomized Design with 6 treatments and 3 replications. Dried corncobs were stored in the farmer’s storage for 4 months. The effects of maize kernels’ initial water content on the development of water content in kernels; the percentage of damaged kernels; and the species of pathogen and insects were investigated during storage with 2-week intervals.  The results demonstrated that drying the corncobs prior storage for 10 days, resulting in 12.96% of water content, significantly decreased the percentage of seed damage to 6.5%, as compared to without drying process which resulted  in 63%.  Aspergillus flavus, Fusarium sp., and Penicillium sp were found to be the main pathogen during storage.  There are no insect pests found during the storage. 


2010 ◽  
Vol 168-170 ◽  
pp. 1496-1500 ◽  
Author(s):  
Zhe Wang ◽  
Si Fa Xu ◽  
Li Li Yan ◽  
Ping Guo ◽  
Qian Chen

Solidified sludge as backfill material exists serious phenomenon of shrinkage and cracking, and the project's strength, permeability and stability will be adversely affected. The material used in this study is sludge with high water content from the Metro construction sites in Hangzhou. In this paper, our main research is the influences of the initial water content of sludge, curing period and cement content on the curing shrinkage of silt. The results show that the shrinkage increases with initial moisture content, decreases with the increase of the cement content, and increases with curing period. Strength decreases with the increase of initial water content, increases with cement content, and increases with curing period. The test has a certain reference value to the engineering practice.


1997 ◽  
Vol 122 (1) ◽  
pp. 122-128 ◽  
Author(s):  
Shaun F. Kelly ◽  
James L. Green ◽  
John S. Selker

The process of fertilizer diffusion was examined using KBr and NaBr salts placed at the top of columns filled with a container medium at an initial water content of 4.0, 2.5, or 1.0 g·g-1 (mass of water/mass of medium). Columns were sealed to create a protected diffusion zone (PDZ) shielding the system from water infiltration and evaporation. Bromide and water distributions were determined after 5, 10, 25, and 120 days. Using a Fickian diffusion model, effective diffusion coefficients calculated for Br- in the medium at 2.5 g·g-1 ranged from 2.7 to 4.6 × 10-6 cm2·s-1, which is 3 to 9 times less than the diffusion coefficient in water alone. Diffusion rates increased with increasing medium water content. Differences in the hygroscopicity and solubility of KBr and NaBr affected the distribution of water and diffusion rates in the columns. Redistribution of water was driven to a significant degree by vapor-phase transport, caused by large gradients in osmotic potential, and was most apparent at low water content. At high water content, water redistribution was affected by solution density gradients in the system. This significantly complicates the mathematical modeling of the system, which renders a simple Fickian diffusion model of limited predictive value in high and low water content media.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2019 ◽  
Vol 67 (7) ◽  
pp. 4803-4810 ◽  
Author(s):  
Xiong Wang ◽  
Tao Qin ◽  
Yexian Qin ◽  
Ahmed H. Abdelrahman ◽  
Russell S. Witte ◽  
...  

Author(s):  
Xiaobing Li ◽  
Jianpeng Chen ◽  
Xiuqing Hu ◽  
Hongtao Fu ◽  
Jun Wang ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 90
Author(s):  
Andrzej Bryś ◽  
Joanna Bryś ◽  
Marko Obranović ◽  
Dubravka Škevin ◽  
Szymon Głowacki ◽  
...  

The olive oil industry represents an important productive sector in the Mediterranean basin countries. Olive stone is an essential by-product generated in the olive oil extraction industries and it represents roughly 10% by weight of the olive fruit. The seeds of pickled olives are also a significant waste product. In the present study, we have investigated the possibility of the use of differential scanning calorimetry for the thermal characterization of seeds from green and black pickled olives from Croatia. The differential scanning calorimeter (DSC) with a normal pressure cell equipped with a cooling system was used to determine the thermal properties of seeds from olives. The following analyses were also performed: the determination of calorific values in a pressure bomb calorimeter, the determination of initial water content, the determination of changes of water content during drying at the temperatures of 30 °C, 50 °C and 80 °C, the determination of a percentage content of seeds mass to the mass of the whole olives, and the determination of ash content. Seeds from olives are characterized by very good parameters as a biomass. The analyzed olive seeds were characterized by low water content, low ash content, and a relatively high caloric value.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shun-ichiro Karato ◽  
Bijaya Karki ◽  
Jeffrey Park

AbstractOceans on Earth are present as a result of dynamic equilibrium between degassing and regassing through the interaction with Earth’s interior. We review mineral physics, geophysical, and geochemical studies related to the global water circulation and conclude that the water content has a peak in the mantle transition zone (MTZ) with a value of 0.1–1 wt% (with large regional variations). When water-rich MTZ materials are transported out of the MTZ, partial melting occurs. Vertical direction of melt migration is determined by the density contrast between the melts and coexisting minerals. Because a density change associated with a phase transformation occurs sharply for a solid but more gradually for a melt, melts formed above the phase transformation depth are generally heavier than solids, whereas melts formed below the transformation depth are lighter than solids. Consequently, hydrous melts formed either above or below the MTZ return to the MTZ, maintaining its high water content. However, the MTZ water content cannot increase without limit. The melt-solid density contrast above the 410 km depends on the temperature. In cooler regions, melting will occur only in the presence of very water-rich materials. Melts produced in these regions have high water content and hence can be buoyant above the 410 km, removing water from the MTZ. Consequently, cooler regions of melting act as a water valve to maintain the water content of the MTZ near its threshold level (~ 0.1–1.0 wt%). Mass-balance considerations explain the observed near-constant sea-level despite large fluctuations over Earth history. Observations suggesting deep-mantle melting are reviewed including the presence of low-velocity anomalies just above and below the MTZ and geochemical evidence for hydrous melts formed in the MTZ. However, the interpretation of long-term sea-level change and the role of deep mantle melting in the global water circulation are non-unique and alternative models are reviewed. Possible future directions of studies on the global water circulation are proposed including geodynamic modeling, mineral physics and observational studies, and studies integrating results from different disciplines.


Sign in / Sign up

Export Citation Format

Share Document