4-years lightning hunt in Venus

2020 ◽  
Author(s):  
Yukihiro Takahashi ◽  
Masataka Imai ◽  
Mitsuteru Sato ◽  
Tastuaki Oono

<p class="p1"><span class="s1"><span class="Apple-converted-space">  </span>For more than 3 decades the existence of lightning discharge in Venus has been controversial, which might be caused by insufficient observational methods optimized for such purpose. There had been no satellite payload intentionally designed for the detection of lightning phenomena using radio waves or optical sensors. LAC, lightning and airglow camera, onboard Akatsuki spacecraft developed by Hokkaido University together with JAXA, is the first sensor made for the lightning optical flash detection in planets other than the Earth. A unique performance of LAC compared to other equipment used in the previous exploration of Venus is the high-speed sampling rate at 20 kHz with 32 pixels of Avalanche Photo Diode (APD) matrix, enabling us to distinguish the natural optical lightning flash from other pulsing noises, including artificial electrical noise and cosmic rays. We selected OI 777 nm line for lightning detection, which is expected to be the most prominent emission in the CO2-dominant atmosphere based on the laboratory discharge experiments carried out by some researchers. We have been conducting lightning hunt since October 2016 with LAC onboard Akatsuki, selecting triggering parameter sets optimized for the light curve similar to the normal lightning and also for sprite type in the Earth, which has a slower variation of optical intensity. The total coverage of the LAC lightning hunt became approximately 100 [million km2-hr], meaning 86 percent detectability of previous results with a ground-based telescope by Hansell et al. (1995).<span class="Apple-converted-space">  </span>Here we report the update of the detailed examination of recorded data by LAC for these almost 4 years and discuss their possible interpretation, considering all kinds of candidates of optical and other sources. Also, the future observation strategy including ground observation with a high-speed photometer installed at the ground telescope and radio observation will be introduced. </span></p>

Author(s):  
Bagus Septyanto ◽  
Dian Nurdiana ◽  
Sitti Ahmiatri Saptari

In general, surface positioning using a global satellite navigation system (GNSS). Many satellites transmit radio signals to the surface of the earth and it was detected by receiver sensors into a function of position and time. Radio waves really bad when spreading in water. So, the underwater positioning uses acoustic wave. One type of underwater positioning is USBL. USBL is a positioning system based on measuring the distance and angle. Based on distance and angle, the position of the target in cartesian coordinates can be calculated. In practice, the effect of ship movement is one of the factors that determine the accuracy of the USBL system. Ship movements like a pitch, roll, and orientation that are not defined by the receiver could changes the position of the target in X, Y and Z coordinates. USBL calibration is performed to detect an error angle. USBL calibration is done by two methods. In USBL calibration Single Position obtained orientation correction value is 1.13 ̊ and a scale factor is 0.99025. For USBL Quadrant calibration, pitch correction values is -1.05, Roll -0.02 ̊, Orientation 6.82 ̊ and scale factor 0.9934 are obtained. The quadrant calibration results deccrease the level of error position to 0.276 - 0.289m at a depth of 89m and 0.432m - 0.644m at a depth of 76m


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Rui Su ◽  
Wenhan Ding ◽  
...  

AbstractTwo special cases of dart leader propagation were observed by the high-speed camera in the leader/return stroke sequences of a classical triggered lightning flash and an altitude-triggered lightning flash, respectively. Different from most of the subsequent return strokes preceded by only one leader, the return stroke in each case was preceded by two leaders occurring successively and competing in the same channel, which herein is named leader-chasing behavior. In one case, the polarity of the latter leader was opposite to that of the former leader and these two combined together to form a new leader, which shared the same polarity with the former leader. In the other case, the latter leader shared the same polarity with the former leader and disappeared after catching up with the former leader. The propagation of the former leader in this case seems not to be significantly influenced by the existence of the latter leader.


Author(s):  
Wei-Hsun Tai ◽  
Ray-Hsien Tang ◽  
Chen-Fu Huang ◽  
Shin-Liang Lo ◽  
Yu-Chi Sung ◽  
...  

The study aimed to investigate the acute effects of handheld loading on standing broad jump (SBJ) performance and biomechanics. Fifteen youth male athletes (mean age: 14.7 ± 0.9 years; body mass: 59.3 ± 8.0 kg; height: 1.73 ± 0.07 m) volunteered to participate in the study. Participants were assigned to perform SBJ with and without 4 kg dumbbells in a random order. Kinematic and kinetic data were collected using 10 infrared high-speed motion-capture cameras at a 250 Hz sampling rate and two force platforms at a 1000 Hz sampling rate. A paired t-test was applied to all variables to determine the significance between loading and unloading SBJs. Horizontal distance (p < 0.001), take-off distance (p = 0.001), landing distance (p < 0.001), horizontal velocity of center of mass (CoM; p < 0.001), push time (p < 0.001), vertical impulse (p = 0.003), and peak horizontal and vertical ground reaction force (GRF; p < 0.001, p = 0.017) were significantly greater in loading SBJ than in unloading SBJ. The take-off vertical velocity of CoM (p = 0.001), take-off angle (p < 0.001), peak knee and hip velocity (p < 0.001, p = 0.007), peak ankle and hip moment (p = 0.006, p = 0.011), and peak hip power (p = 0.014) were significantly greater in unloading SBJ than in loading SBJ. Conclusions: Acute enhancement in SBJ performance was observed with handheld loading. The present findings contribute to the understanding of biomechanical differences in SBJ performance with handheld loading and are highly applicable to strength and conditioning training for athletes.


1967 ◽  
Vol 20 (03) ◽  
pp. 281-285
Author(s):  
H. C. Freiesleben

It has recently been suggested that 24-hour satellites might be used as navigational aids. To what category of position determination aids should these be assigned ? Is a satellite of this kind as it were a landmark, because, at least in theory, it remains fixed over the same point on the Earth's surface, in which case it should be classified under land-based navigation aids ? Is it a celestial body, although only one tenth as far from the Earth as the Moon ? If so, it is an astronomical navigation aid. Or is it a radio aid ? After all, its use for position determination depends on radio waves. In this paper I shall favour this last view. For automation is most feasible when an object of observation can be manipulated. This is easiest with radio aids, but it is, of course, impossible with natural stars.At present artificial satellites have the advantage over all other radio aids of world-wide coverage.


Author(s):  
S. Tiguntsev

In classical physics, time is considered absolute. It is believed that all processes, regardless of their complexity, do not affect the flow of time The theory of relativity determines that the flow of time for bodies depends both on the speed of movement of bodies and on the magnitude of the gravitational potential. It is believed that time in space orbit passes slower due to the high speed of the spacecraft, and faster due to the lower gravitational potential than on the surface of the Earth. Currently, the dependence of time on the magnitude of the gravitational potential and velocity (relativistic effect) is taken into account in global positioning systems. However, studying the relativistic effect, scientists have made a wrong interpretation of the difference between the clock frequency of an orbiting satellite and the clock frequency on the Earth's surface. All further studies to explain the relativistic effect were carried out according to a similar scenario, that is, only the difference in clock frequencies under conditions of different gravitational potentials was investigated. While conducting theoretical research, I found that the frequency of the signal changes along the way from the satellite to the receiver due to the influence of Earth's gravity. It was found that the readings of two high-precision clocks located at different heights will not differ after any period of time, that is, it is shown that the flow of time does not depend on the gravitational potential. It is proposed to conduct full-scale experiments, during which some high-precision clocks are sent aboard the space station, while others remain in the laboratory on the surface of the earth. It is expected that the readings of the satellite clock will be absolutely identical to the readings of the clock in the Earth laboratory.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 367-369
Author(s):  
Lawrence Teitelbaum ◽  
Walid Majid ◽  
Manuel M. Franco ◽  
Daniel J. Hoppe ◽  
Shinji Horiuchi ◽  
...  

AbstractMillisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.


2021 ◽  
Vol 13 (1) ◽  
pp. 1616-1642
Author(s):  
Sai Kiran Kuntla

Abstract The repetitive and destructive nature of floods across the globe causes significant economic damage, loss of human lives, and leaves the people living in flood-prone areas with fear and insecurity. With enough literature projecting an increase in flood frequency, severity, and magnitude in the future, there is a clear need for effective flood management strategies and timely implementation. The earth observatory satellites of the European Space Agency’s Sentinel series, Sentinel-1, Sentinel-2, and Sentinel-3, have a great potential to combat these disastrous floods by their peerless surveillance capabilities that could assist in various phases of flood management. In this article, the technical specifications and operations of the microwave synthetic aperture radar (SAR) onboard Sentinel-1, optical sensors onboard Sentinel-2 (Multispectral Instrument) and Sentinel-3 (Ocean and Land Color Instrument), and SAR altimeter onboard Sentinel-3 are described. Moreover, the observational capabilities of these three satellites and how these observations can meet the needs of researchers and flood disaster managers are discussed in detail. Furthermore, we reviewed how these satellites carrying a range of technologies that provide a broad spectrum of earth observations stand out among their predecessors and have bought a step-change in flood monitoring, understanding, and management to mitigate their adverse effects. Finally, the study is concluded by highlighting the revolution this fleet of Sentinel satellites has brought in the flood management studies and applications.


2021 ◽  
Author(s):  
Wei Feng ◽  
Xingyu Sun ◽  
Xiuhua Li ◽  
Junhui Gao ◽  
Xiaodong Zhao ◽  
...  

Author(s):  
Arthur M. Diamond

Cognitively diverse project entrepreneurs are the ones most likely to succeed at making a ding in the universe. Project entrepreneurs are more effective because they are more likely to persevere at achieving their project and at undertaking new breakthrough innovations. Cyrus Field, Marconi, Walt Disney, Sam Walton, and Steve Jobs were project entrepreneurs. Innovative entrepreneurs are likely to either know less theory, or to take theory less seriously, which allows them to try what theory says is impossible. For instance, the physics of Marconi’s day said that his radio waves should go straight into space rather than curve with the earth to cross the Atlantic. Conversely, innovative entrepreneurs often have more tacit knowledge. Innovative entrepreneurs pursue serendipitous observations or slow hunches, often through trial-and-error experiments, and may benefit from cognitive diversity, such as dyslexia and Asperger’s syndrome. What inventors and entrepreneurs know is the subject matter of the epistemology of innovation.


2019 ◽  
Vol 26 (5) ◽  
pp. 1631-1637
Author(s):  
Honglan Xie ◽  
Hongxin Luo ◽  
Guohao Du ◽  
Chengqiang Zhao ◽  
Wendong Xu ◽  
...  

Indirect X-ray imaging detectors consisting of scintillator screens, long-working-distance microscope lenses and scientific high-speed complementary metal-oxide semiconductor (CMOS) cameras are usually used to realize fast X-ray imaging with white-beam synchrotron radiation. However, the detector efficiency is limited by the coupling efficiency of the long-working-distance microscope lenses, which is only about 5%. A long-working-distance microscope lenses system with a large numerical aperture (NA) is designed to increase the coupling efficiency. It offers an NA of 0.5 at 8× magnification. The Mitutoyo long-working-distance microscope lenses system offers an NA of 0.21 at 7.5× magnification. Compared with the Mitutoyo system, the developed long-working-distance microscope lenses system offers about twice the NA and four times the coupling efficiency. In the indirect X-ray imaging detector, a 50 µm-thick LuAG:Ce scintillator matching with the NA, and a high-speed visible-light CMOS FastCAM SAZ Photron camera are used. Test results show that the detector realized fast X-ray imaging with a frame rate of 100000 frames s−1 and fast X-ray microtomography with a temporal sampling rate up to 25 Hz (25 tomograms s−1).


Sign in / Sign up

Export Citation Format

Share Document