Large Scale Volcanism: an explanation for the heat-death of Venus like worlds

2021 ◽  
Author(s):  
Michael Way ◽  
Richard Ernst ◽  
Jeffrey Scargle

<p class="p1"><span class="s1">Large scale volcanism has played a critical role in the long-term habitability </span><span class="s1">of Earth and possibly Venus.<span class="Apple-converted-space">  </span>We examine the timing of Large Igneous Provinces </span><span class="s1">(LIPs) through Earth’s history [1] to estimate the likelihood of nearly simultaneous </span><span class="s1">events that could drive a planet into an extreme moist or runaway greenhouse, </span><span class="s1">quenching subductive plate tectonics. Such events would end volatile cycling </span>and may have caused the heat-death of Venus. Using the Earth's LIP record <span class="s1">a conservative estimate of the rate of LIPs in a random history statistically </span>the same as Earth’s, pairs and triplets of LIPs closer in time <span class="s1">than 0.1-1 Myrs are likely. This simultaneity threshold is significant to the </span><span class="s1">extent that it is less than the time over which environmental effects </span><span class="s1">have been shown to persist, for example in the Siberian Traps record [2,3].</span></p> <p class="p1"><span class="s1">[1] Ernst, R.E. et al. (2021). Large Igneous Province Record Through Time and </span><span class="s1">Implications for Secular Environmental Changes and Geological Time-Scale </span>Boundaries. In: Ernst, R.E., Dickson, A.J., Bekker, A. (eds.) Large Igneous <span class="s1">Provinces: A Driver of Global Environmental and Biotic Changes. AGU Geophysical </span><span class="s1">Monograph 255 (pp. 3-26).</span></p> <p class="p1"><span class="s1">[2] Burgess, S.D. et al. (2014). High-precision timeline for Earth’s most </span><span class="s1">severe extinction. Proceedings of the National Academy of Sciences, 111:</span></p> <p class="p1"><span class="s1">3316–3321 [correction 2014, 111: 5050]. </span></p> <p class="p1"><span class="s1">[3] Burgess, S.D. & Bowring, S.A. (2015). High-precision geochronology confirms </span><span class="s1">voluminous magmatism before, during and after Earth's most severe extinction. </span><span class="s1">Sci. Adv. 1 (7), e1500470. http://dx.doi.org/10.1126/sciadv.1500470. </span></p>

1997 ◽  
Vol 40 (4) ◽  
Author(s):  
M. Viti ◽  
D. Albarello ◽  
E. Mantovani

Seismological investigations have provided an estimate of the gross structnral features of the crust/upper mantle system in the Mediterranean area. However, this information is only representative of the short-term me- chanical behaviour of rocks and cannot help us to understand slow deformations and related tectonic processes on the geological time scale. In this work strength envelopes for several major structural provinces of the Mediterranean area have been tentatively derived from seismological stratification and heat flow data, on the assumption of constant and uniforrn strain rate (10-16 S-1), wet rocks and conductive geotherm. It is also shown how the uncertainties in the reconstruction of thermal profiles can influence the main rheological prop- erties of the lithosphere, as thickness and total strength. The thickest (50-70 km) and strongest mechanical lithospheres correspond to the coldest zones (with heat flow lower than or equal to 50 mW m-2), i.e., the Io- nian and Levantine mesozoic basins, the Adriatic and Eurasian foreland zones and NW Greece. Heat flows larger than 65 mW m-2, generally observed in extensional zones (Tyrrhenian, Sicily Channel, Northern Aegean, Macedonia and Western Turkey), are mostly related to mechanical lithospheres thinner than 20 km. The characteristics of strength envelopes, and in particular the presence of soft layers in the crust, suggest a reasonable interpretation of some large-scale features which characterize the tectonic evolution of the Central- Eastem Mediterranean.


Environments ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 22 ◽  
Author(s):  
Jennifer Marshman ◽  
Alison Blay-Palmer ◽  
Karen Landman

In this paper, we propose a new approach—understood as a whole-of-community approach—to address a dualistic and dysfunctional human/nature relationship. Of particular concern is the decline in health and numbers of the insects that pollinate an estimated 90 percent of the Earth’s flora and an estimated 35 percent of global crop volume. Specifically, bees provide the majority of biotic pollination and play a critical role in food crop pollination. Multiple factors are contributing to this growing problem including a changing climate. In 2016, the International Commission on Stratigraphy agreed that the concept of the Anthropocene—the human epoch—is of sufficient scale to be considered part of the geological time scale. This indicates that these crises are not random or passive—they are largely the direct result of human activities. Despite decades of awareness of these socio-ecological issues, they continue to worsen. In addition, the growing awareness of the critical role of pollinators is creating a new understanding of our interconnectedness with the “natural” world. We introduce the Bee City movement as a way to operationalize a whole-of-community approach. Individual action is critical, but addressing pollinator health in these forums legitimizes and provides an institutional space for otherwise fringe, or even marginalized, activities and more coherent spaces for habitat creation.


2013 ◽  
Vol 92 (2-3) ◽  
pp. 193-211 ◽  
Author(s):  
J.H. Stel

AbstractTwo notions, Ocean Space and the Anthropocene, are discussed. The first is occasionally used in legal and governance literature, and in the media. The Anthropocene, however, is widely applied in the global change research community and the media. The notion of ocean space stands for a holistic, system science approach combined with 4D thinking from the ocean, and the processes within it, towards the land. Ocean space is in fact a social-ecological concept that deals with sustainability challenges which are the consequence of the complex interactions between humans and the marine environment on all scales. Ocean space is, on a human scale, impressively large. On a planetary scale, however, it is insignificant, although it has been an ancient feature of the Earth for the last four billion years or so. Yet, ocean space is a critical player in the Earth System; it is central to climate regulation, the hydrological and carbon cycles and nutrient flows, it balances levels of atmospheric gases, it is a source of raw materials vital for medical and other uses, and a sink for anthropogenic pollutants. The notion also encompasses issues such as exploration, adventure, science, resources, conservation, sustainability, etc., and should be an innovative and attractive outreach instrument for the media. Finally, it marks the fundamental change in ocean exploration in the twenty-first century in which ocean-observing systems, and fleets of robots, are routinely and continuously providing quality controlled data and information on the present and future states of ocean space. Advocates of the notion of the Anthropocene argue that this new epoch in geological time, commenced with the British industrial revolution. To date, the Anthropocene has already been subdivided into three stages. The first of these coincides with the beginning of the British industrial revolution around 1800. This transition quickly transformed a society which used natural energy sources into one that uses fossil fuels. The present high-energy society of more than seven billion people mostly with highly improved living standards and birth rates, and a global economy, is the consequence. The downside of this development comprises intensive resource and land use as well as large-scale pollution of the (marine) environment. The first stage of the Anthropocene ended abruptly after the Second World War when a new technology push occurred, leading to the second stage: ‘the Great Acceleration’ (1945-2015) followed by the third: ‘Stewards of the Earth’. Here it is concluded that the notion of the Anthropocene reflects a hierarchical or individualistic perspective, often leading to a ‘business as usual’ management style, and ‘humanises’ the geological time scale. The use of this notion is not supported. However, it is already very popular in the media. This again might lead to overestimating the role of humans in nature, and might facilitate an even more destructive attitude towards it, through the application of geo-engineering. The latter could be opening another Pandora's box. Instead we should move to a more sustainable future in which human activities are better fine tuned to the environment that we are part of. In this respect, transition management is an interesting new paradigm.


2015 ◽  
Vol 42 (3) ◽  
pp. 271 ◽  
Author(s):  
Andrew D. Miall

The modern science of stratigraphy is founded on a nineteenth-century empirical base – the lithostratigraphy and biostratigraphy of basin-fill successions. This stratigraphic record comprises the most complete data set available for reconstructing the tectonic and climatic history of Earth. However, it has taken two hundred years of evolution of concepts and methods for the science to evolve from what Ernest Rutherford scornfully termed “stamp collecting” to a modern dynamic science characterized by an array of refined methods for documenting geological rates and processes.    Major developments in the evolution of the science of stratigraphy include the growth of an ever-more precise geological time scale, the birth of sedimentology and basin-analysis methods, the influence of plate tectonics and, most importantly, the development, since the late 1970s, of the concepts of sequence stratigraphy. Refinements in these concepts have required the integration of all pre-existing data and methods into a modern, multidisciplinary approach, as exemplified by the current drive to apply the retrodicted history of Earth’s orbital behaviour to the construction of a high-precision ‘astrochronological’ time scale back to at least the Mesozoic record.    At its core, stratigraphy, like much of geology, is a field-based science. The field context of a stratigraphic sample or succession remains the most important starting point for any advanced mapping, analytical or modeling work.RÉSUMÉLa science moderne de la stratigraphie repose sur une base empirique du XIXe siècle, soit la lithostratigraphie et la biostratigraphie de successions de remplissage de bassins sédimentaires.  Cette archive stratigraphique est constituée de la base de données la plus complète permettant de reconstituer l’histoire tectonique et climatique de la Terre.  Cela dit, il aura fallu deux cents ans d’évolution des concepts et des méthodes pour que cette activité passe de l’état de « timbromanie », comme disait dédaigneusement Ernest Rutherford, à l’état de science moderne dynamique caractérisée par sa panoplie de méthodes permettant de documenter les rythmes et processus géologiques.   Les principaux développements de l’évolution de la science de la stratigraphie proviennent de l’élaboration d’une échelle géologique toujours plus précise, l’avènement de la sédimentologie et des méthodes d’analyse des bassins, de l’influence de la tectonique des plaques et, surtout du développement depuis la fin des années 1970, des concepts de stratigraphie séquentielle.  Des raffinements dans ces concepts ont nécessité l'intégration de toutes les données et méthodes existantes dans une approche moderne, multidisciplinaire, comme le montre ce mouvement actuel qui entend utiliser la reconstitution de l’histoire du comportement orbital de la Terre pour l’élaboration d’une échelle temporelle « astrochronologique » de haute précision, remontant jusqu’au Mésozoïque au moins.     Comme pour la géologie, la stratigraphie est une science de terrain.  Le contexte de terrain d’un échantillon stratigraphique ou d’une succession demeure le point de départ le plus important, pour tout travail sérieux de cartographie, d’analyse ou de modélisation.


Pflege ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 57-63
Author(s):  
Hannes Mayerl ◽  
Tanja Trummer ◽  
Erwin Stolz ◽  
Éva Rásky ◽  
Wolfgang Freidl

Abstract. Background: Given that nursing staff play a critical role in the decision regarding use of physical restraints, research has examined nursing professionals’ attitudes toward this practice. Aim: Since nursing professionals’ views on physical restraint use have not yet been examined in Austria to date, we aimed to explore nursing professionals’ attitudes concerning use of physical restraints in nursing homes of Styria (Austria). Method: Data were collected from a convenience sample of nursing professionals (N = 355) within 19 Styrian nursing homes, based on a cross-sectional study design. Attitudes toward the practice of restraint use were assessed by means of the Maastricht Attitude Questionnaire in the German version. Results: The overall results showed rather positive attitudes toward the use of physical restraints, yet the findings regarding the sub-dimensions of the questionnaire were mixed. Although nursing professionals tended to deny “good reasons” for using physical restraints, they evaluated the consequences of physical restraint use rather positive and considered restraint use as an appropriate health care practice. Nursing professionals’ views regarding the consequences of using specific physical restraints further showed that belts were considered as the most restricting and discomforting devices. Conclusions: Overall, Austrian nursing professionals seemed to hold more positive attitudes toward the use of physical restraints than counterparts in other Western European countries. Future nationwide large-scale surveys will be needed to confirm our findings.


1996 ◽  
pp. 4-15
Author(s):  
S. Golovaschenko ◽  
Petro Kosuha

The report is based on the first results of the study "The History of the Evangelical Christians-Baptists in Ukraine", carried out in 1994-1996 by the joint efforts of the Department of Religious Studies at the Institute of Philosophy of the National Academy of Sciences of Ukraine and the Odessa Theological Seminary of Evangelical Christian Baptists. A large-scale description and research of archival sources on the history of evangelical movements in our country gave the first experience of fruitful cooperation between secular and church researchers.


2020 ◽  
Vol 140 (4) ◽  
pp. 272-280
Author(s):  
Wataru Ohnishi ◽  
Hiroshi Fujimoto ◽  
Koichi Sakata

1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


Sign in / Sign up

Export Citation Format

Share Document