The Open Polar Cap of Rotating Magnetospheres

2021 ◽  
Author(s):  
Binzheng Zhang

<p>The classic Dungey cycle plays an essential role in understanding the dynamics of the terrestrial magnetosphere. However, its direct applicability to planetary magnetospheres such as Jupiter is limited, especially when the planetary rotation is much faster than the Earth. We use a series of numerical experiments to show the transition of the terrestrial magnetosphere from a classic Dungey cycle, convection-dominated system to rotation-dominated configurations. The numerical experiments use the Earth's magnetosphere-ionosphere system as a testbed, with modified rotation speed to increase the influence of planetary rotation over solar wind driving, characterized by the ratio between the solar wind merging potential and the polar cap rotation potential. Results show that when the rotation potential of the polar magnetosphere becomes comparable to the merging potential of the solar wind, the classic Dungey cycle is modified by azimuthal transport of magnetic flux, resulting in a more closed polar magnetosphere with a crescent-shaped open flux region in the ionosphere. These numerical experiments provide a theoretical framework for understanding the fundamentals of magnetospheric physics, which is potentially applicable to the Saturn, Jupiter, and exo-planetary systems.</p>

2007 ◽  
Vol 25 (1) ◽  
pp. 191-205 ◽  
Author(s):  
C. J. Farrugia ◽  
A. Grocott ◽  
P. E. Sandholt ◽  
S. W. H. Cowley ◽  
Y. Miyoshi ◽  
...  

Abstract. The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively). The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45) nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i) generally weak and patchy (in time) low-latitude dayside reconnection or reconnection poleward of the cusps; (ii) absence of substorms; (iii) a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT), giving an unforced decreased of ~1.1 nT/h; (iv) the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH) instability; (v) a cross-polar cap potential of just 20–30 kV; (vi) a persistent, polar cap region containing (vii) very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992) but has never yet been observed.


2004 ◽  
Vol 22 (4) ◽  
pp. 1379-1394 ◽  
Author(s):  
S. W. H. Cowley ◽  
E. J. Bunce ◽  
R. Prangé

Abstract. We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of upward current bounding the region of open and closed field lines. Estimates indicate that auroras of brightness from a few kR to a few tens of kR can be produced by precipitating accelerated magnetospheric electrons of a few keV to a few tens of keV energy, if the current flows in a region which is sufficiently narrow, of the order of or less than ~1000 km (~1° latitude) wide. Arguments are also given which indicate that the auroras should typically be significantly brighter on the dawn side of the oval than at dusk, by roughly an order of magnitude, and should be displaced somewhat towards dawn by the down-tail outflow at dusk associated with the Vasyliunas cycle. Model estimates are found to be in good agreement with data derived from high quality images newly obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, both in regard to physical parameters, as well as local time effects. The implication of this picture is that the form, position, and brightness of Saturn's main auroral oval provide remote diagnostics of the magnetospheric interaction with the solar wind, including dynamics associated with magnetopause and tail plasma interaction processes. Key words. Magnetospheric physics (auroral phenomena, magnetosphere-ionosphere interactions, solar windmagnetosphere interactions)


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


2016 ◽  
Vol 34 (11) ◽  
pp. 961-974 ◽  
Author(s):  
Lukas Maes ◽  
Romain Maggiolo ◽  
Johan De Keyser

Abstract. The cold ions (energy less than several tens of electronvolts) flowing out from the polar ionosphere, called the polar wind, are an important source of plasma for the magnetosphere. The main source of energy driving the polar wind is solar illumination, which therefore has a large influence on the outflow. Observations have shown that solar illumination creates roughly two distinct regimes where the outflow from a sunlit ionosphere is higher than that from a dark one. The transition between both regimes is at a solar zenith angle larger than 90°. The rotation of the Earth and its orbit around the Sun causes the magnetic polar cap to move into and out of the sunlight. In this paper we use a simple set-up to study qualitatively the effects of these variations in solar illumination of the polar cap on the ion flux from the whole polar cap. We find that this flux exhibits diurnal and seasonal variations even when combining the flux from both hemispheres. In addition there are asymmetries between the outflows from the Northern Hemisphere and the Southern Hemisphere.


2007 ◽  
Vol 25 (8) ◽  
pp. 1865-1876 ◽  
Author(s):  
A. D. DeJong ◽  
X. Cai ◽  
R. C. Clauer ◽  
J. F. Spann

Abstract. Using Polar UVI LBHl and IMAGE FUV WIC data, we have compared the auroral signatures and polar cap open flux for isolated substorms, sawteeth oscillations, and steady magnetospheric convection (SMC) events. First, a case study of each event type is performed, comparing auroral signatures and open magnetic fluxes to one another. The latitude location of the auroral oval is similar during isolated substorms and SMC events. The auroral intensity during SMC events is similar to that observed during the expansion phase of an isolated substorm. Examination of an individual sawtooth shows that the auroral intensity is much greater than the SMC or isolated substorm events and the auroral oval is displaced equatorward making a larger polar cap. The temporal variations observed during the individual sawtooth are similar to that observed during the isolated substorm, and while the change in polar cap flux measured during the sawtooth is larger, the percent change in flux is similar to that measured during the isolated substorm. These results are confirmed by a statistical analysis of events within these three classes. The results show that the auroral oval measured during individual sawteeth contains a polar cap with, on average, 150% more magnetic flux than the oval measured during isolated substorms or during SMC events. However, both isolated substorms and sawteeth show a 30% decrease in polar cap magnetic flux during the dipolarization (expansion) phase.


2003 ◽  
Vol 21 (9) ◽  
pp. 1931-1938 ◽  
Author(s):  
B. V. Kozelov ◽  
T. V. Kozelova

Abstract. We propose a cellular automata model (CAM) to describe the substorm activity of the magnetospheric-ionospheric system. The state of each cell in the model is described by two numbers that correspond to the energy content in a region of the current sheet in the magnetospheric tail and to the conductivity of the ionospheric domain that is magnetically connected with this region. The driving force of the system is supposed to be provided by the solar wind that is convected along the two boundaries of the system. The energy flux inside is ensured by the penetration of the energy from the solar wind into the array of cells (magnetospheric tail) with a finite velocity. The third boundary (near to the Earth) is closed and the fourth boundary is opened, thereby modeling the flux far away from the tail. The energy dissipation in the system is quite similar to other CAM models, when the energy in a particular cell exceeds some pre-defined threshold, and the part of the energy excess is redistributed between the neighbouring cells. The second number attributed to each cell mimics ionospheric conductivity that can allow for a part of the energy to be shed on field-aligned currents. The feedback between "ionosphere" and "magnetospheric tail" is provided by the change in a part of the energy, which is redistributed in the tail when the threshold is surpassed. The control parameter of the model is the z-component of the interplanetary magnetic field (Bz IMF), "frozen" into the solar wind. To study the internal dynamics of the system at the beginning, this control parameter is taken to be constant. The dynamics of the system undergoes several bifurcations, when the constant varies from - 0.6 to - 6.0. The Bz IMF input results in the periodic transients (activation regions) and the inter-transient period decreases with the decrease of Bz. At the same time the onset of activations in the array shifts towards the "Earth". When the modulus of the Bz IMF exceeds some threshold value, the transition takes place from periodic to chaotic dynamics. In the second part of the work we have chosen as the source the real values of the z-component of the interplanetary magnetic field taken from satellite observations. We have shown that in this case the statistical properties of the transients reproduce the characteristic features observed by Lui et al. (2000).Key words. Magnetospheric physics (magnetosphere-ionosphere interactions) – Space plasma physics (nonlinear phenomena)


2021 ◽  
Author(s):  
Jacobo Varela Rodriguez ◽  
Sacha A. Brun ◽  
Antoine Strugarek ◽  
Victor Réville ◽  
Filippo Pantellini ◽  
...  

<p><span>The aim of the study is to analyze the response of the Earth magnetosphere for various space weather conditions and model the effect of interplanetary coronal mass ejections. The magnetopause stand off distance, open-closed field lines boundary and plasma flows towards the planet surface are investigated. We use the MHD code PLUTO in spherical coordinates to perform a parametric study regarding the dynamic pressure and temperature of the solar wind as well as the interplanetary magnetic field intensity and orientation. The range of the parameters analyzed extends from regular to extreme space weather conditions consistent with coronal mass ejections at the Earth orbit. The direct precipitation of the solar wind on the Earth day side at equatorial latitudes is extremely unlikely even during super coronal mass ejections. For example, the SW precipitation towards the Earth surface for a IMF purely oriented in the Southward direction requires a IMF intensity around 1000 nT and the SW dynamic pressure above 350 nPa, space weather conditions well above super-ICMEs. The analysis is extended to previous stages of the solar evolution considering the rotation tracks from Carolan (2019). The simulations performed indicate an efficient shielding of the Earth surface 1100 Myr after the Sun enters in the main sequence. On the other hand, for early evolution phases along the Sun main sequence once the Sun rotation rate was at least 5 times faster (< 440 Myr), the Earth surface was directly exposed to the solar wind during coronal mass ejections (assuming today´s Earth magnetic field). Regarding the satellites orbiting the Earth, Southward and Ecliptic IMF orientations are particularly adverse for Geosynchronous satellites, partially exposed to the SW if the SW dynamic pressure is 8-14 nPa and the IMF intensity 10 nT. On the other hand, Medium orbit satellites at 20000 km are directly exposed to the SW during Common ICME if the IMF orientation is Southward and during Strong ICME if the IMF orientation is Earth-Sun or Ecliptic. The same way, Medium orbit satellites at 10000 km are directly exposed to the SW if a Super ICME with Southward IMF orientation impacts the Earth.</span></p><p>This work was supported by the project 2019-T1/AMB-13648 founded by the Comunidad de Madrid, grants ERC WholeSun, Exoplanets A and PNP. We extend our thanks to CNES for Solar Orbiter, PLATO and Meteo Space science support and to INSU/PNST for their financial support.</p>


2021 ◽  
Author(s):  
Jérémy Rekier ◽  
Santiago Triana ◽  
Véronique Dehant

<p>Magnetic fields inside planetary objects can influence their rotation. This is true, in particular, of terrestrial objects with a metallic liquid core and a self-sustained dynamo such as the Earth, Mercury, Ganymede, etc. and also, to a lesser extent, of objects that don’t have a dynamo but are embedded in the magnetic field of their parent body like Jupiter’s moon, Io.<br>In these objects, angular momentum is transfered through the electromagnetic torques at the Core-Mantle Boundary (CMB) [1]. In the Earth, these have the potential to produce a strong modulation in the length of day at the decadal and interannual timescales [2]. They also affect the periods and amplitudes of nutation [3] and polar motion [4]. <br>The intensity of these torques depends primarily on the value of the electric conductivity at the base of the mantle, a close study and detailed modelling of their role in planetary rotation can thus teach us a lot about the physical processes taking place near the CMB.</p><p>In the study of the Earth’s length of day variations, the interplay between rotation and the internal magnetic field arrises from the excitation of torsional oscillations inside the Earth’s core [5]. These oscillations are traditionally modelled based on a series of assumptions such as that of Quasi-Geostrophicity (QG) of the flow inside the core [6]. On the other hand, the effect of the magnetic field on nutations and polar motion is traditionally treated as an additional coupling at the CMB [1]. In such model, the core flow is assumed to have a uniform vorticity and its pattern is kept unaffected by the magnetic field. </p><p>In the present work, we follow a different approach based on the study of magneto-inertial waves. When coupled to gravity through the effect of density stratification, these waves are known to play a crucial role in the oscillations of stars known as magneto-gravito-inertial modes [7]. The same kind of coupling inside the Earth’s core gives rise to the so-called MAC waves which are directly and conceptually related to the aforementioned torsional oscillations [8]. </p><p>We present our preliminary results on the computation of magneto-inertial waves in a freely rotating planetary model with a partially conducting mantle. We show how these waves can alter the frequencies of the free rotational modes identified as the Free Core Nutation (FCN) and Chandler Wobble (CW). We analyse how these results compare to those based on the QG hypothesis and how these are modified when viscosity and density stratification are taken into account. </p><p>[1] Dehant, V. et al. Geodesy and Geodynamics 8, 389–395 (2017). doi:10.1016/j.geog.2017.04.005<br>[2] Holme, R. et al. Nature 499, 202–204 (2013). doi:10.1038/nature12282<br>[3] Dumberry, M. et al. Geophys. J. Int. 191, 530–544 (2012). doi:10.1111/j.1365-246X.2012.05625.x<br>[4] Kuang, W. et al. Geod. Geodyn. 10, 356–362 (2019). doi:10.1016/j.geog.2019.06.003<br>[5] Jault, D. et al. Nature 333, 353–356 (1988). doi:10.1038/333353a0<br>[6] Gerick, F. et al. Geophys. Res. Lett. (2020). doi:10.1029/2020gl090803<br>[7] Mathis, S. et al. EAS Publications Series 62 323-362 (2013). doi: 10.1051/eas/1362010<br>[8] Buffett, B. et al. Geophys. J. Int. 204, 1789–1800 (2016). doi:10.1093/gji/ggv552</p>


Sign in / Sign up

Export Citation Format

Share Document