scholarly journals Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins

2021 ◽  
Vol 13 (6) ◽  
pp. 2777-2799
Author(s):  
Li-Qing Jiang ◽  
Richard A. Feely ◽  
Rik Wanninkhof ◽  
Dana Greeley ◽  
Leticia Barbero ◽  
...  

Abstract. Internally consistent, quality-controlled (QC) data products play an important role in promoting regional-to-global research efforts to understand societal vulnerabilities to ocean acidification (OA). However, there are currently no such data products for the coastal ocean, where most of the OA-susceptible commercial and recreational fisheries and aquaculture industries are located. In this collaborative effort, we compiled, quality-controlled, and synthesized 2 decades of discrete measurements of inorganic carbon system parameters, oxygen, and nutrient chemistry data from the North American continental shelves to generate a data product called the Coastal Ocean Data Analysis Product in North America (CODAP-NA). There are few deep-water (> 1500 m) sampling locations in the current data product. As a result, crossover analyses, which rely on comparisons between measurements on different cruises in the stable deep ocean, could not form the basis for cruise-to-cruise adjustments. For this reason, care was taken in the selection of data sets to include in this initial release of CODAP-NA, and only data sets from laboratories with known quality assurance practices were included. New consistency checks and outlier detections were used to QC the data. Future releases of this CODAP-NA product will use this core data product as the basis for cruise-to-cruise comparisons. We worked closely with the investigators who collected and measured these data during the QC process. This version (v2021) of the CODAP-NA is comprised of 3391 oceanographic profiles from 61 research cruises covering all continental shelves of North America, from Alaska to Mexico in the west and from Canada to the Caribbean in the east. Data for 14 variables (temperature; salinity; dissolved oxygen content; dissolved inorganic carbon content; total alkalinity; pH on total scale; carbonate ion content; fugacity of carbon dioxide; and substance contents of silicate, phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have been subjected to extensive QC. CODAP-NA is available as a merged data product (Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531n-c230, https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021) (Jiang et al., 2021a). The original cruise data have also been updated with data providers' consent and summarized in a table with links to NOAA's National Centers for Environmental Information (NCEI) archives (https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html).

2021 ◽  
Author(s):  
Li-Qing Jiang ◽  
Richard A. Feely ◽  
Rik Wanninkhof ◽  
Dana Greeley ◽  
Leticia Barbero ◽  
...  

Abstract. Internally-consistent, quality-controlled data products play a very important role in promoting regional to global research efforts to understand societal vulnerabilities to ocean acidification (OA). However, there are currently no such data products for the coastal ocean where most of the OA-susceptible commercial and recreational fisheries and aquaculture industries are located. In this collaborative effort, we compiled, quality controlled (QC), and synthesized two decades of discrete measurements of inorganic carbon system parameters, oxygen, and nutrient chemistry data from the U.S. North American continental shelves, to generate a data product called the Coastal Ocean Data Analysis Product for North America (CODAP-NA). There are few deep-water (> 1500 m) sampling locations in the current data product. As a result, cross-over analyses, which rely on comparisons between measurements on different cruises in the stable deep ocean, could not form the basis for cruise-to-cruise adjustments. For this reason, care was taken in the selection of data sets to include in this initial release of CODAP-NA, and only data sets from laboratories with known quality assurance practices were included. New consistency checks and outlier detections were used to QC the data. Future releases of this CODAP-NA product will use this core data product as the basis for secondary QC. We worked closely with the investigators who collected and measured these data during the QC process. This version of the CODAP-NA is comprised of 3,292 oceanographic profiles from 61 research cruises covering all continental shelves of North America, from Alaska to Mexico in the west and from Canada to the Caribbean in the east. Data for 14 variables (temperature; salinity; dissolved oxygen concentration; dissolved inorganic carbon concentration; total alkalinity; pH on the Total Scale; carbonate ion concentration; fugacity of carbon dioxide; and concentrations of silicate, phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have been subjected to extensive QC. CODAP-NA is available as a merged data product (Excel, CSV, MATLAB, and NetCDF, https://doi.org/10.25921/531n-c230, https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html) (Jiang et al., 2020). The original cruise data have also been updated with data providers' consent and summarized in a table with links to NOAA's National Centers for Environmental Information (NCEI) archives (https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html).


2018 ◽  
Author(s):  
Katja Fennel ◽  
Simone Alin ◽  
Leticia Barbero ◽  
Wiley Evans ◽  
Timotheé Bourgeois ◽  
...  

Abstract. A quantification of carbon fluxes in the coastal ocean and across its boundaries, specifically the air-sea, land-to-coastal-ocean and coastal-to-open-ocean interfaces, is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes with focus on the North American coastal ocean. Several observing networks and high-resolution regional models are now available. Recent efforts have focused primarily on quantifying net air-sea exchange of carbon dioxide (CO2). Some studies have estimated other key fluxes, such as the exchange of organic and inorganic carbon between shelves and the open ocean. Available estimates of air-sea CO2 flux, informed by more than a decade of observations, indicate that the North American margins act as a net sink for atmospheric CO2. This net uptake is driven primarily by the high-latitude regions. The estimated magnitude of the net flux is 160 ± 80 Tg C/y for the North American Exclusive Economic Zone, a number that is not well constrained. The increasing concentration of inorganic carbon in coastal and open-ocean waters leads to ocean acidification. As a result conditions favouring dissolution of calcium carbonate occur regularly in subsurface coastal waters in the Arctic, which are naturally prone to low pH, and the North Pacific, where upwelling of deep, carbon-rich waters has intensified and, in combination with the uptake of anthropogenic carbon, leads to low seawater pH and aragonite saturation states during the upwelling season. Expanded monitoring and extension of existing model capabilities are required to provide more reliable coastal carbon budgets, projections of future states of the coastal ocean, and quantification of anthropogenic carbon contributions.


2019 ◽  
Vol 16 (6) ◽  
pp. 1281-1304 ◽  
Author(s):  
Katja Fennel ◽  
Simone Alin ◽  
Leticia Barbero ◽  
Wiley Evans ◽  
Timothée Bourgeois ◽  
...  

Abstract. A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes for the North American coastal ocean. Several observing networks and high-resolution regional models are now available. Recent efforts have focused primarily on quantifying the net air–sea exchange of carbon dioxide (CO2). Some studies have estimated other key fluxes, such as the exchange of organic and inorganic carbon between shelves and the open ocean. Available estimates of air–sea CO2 flux, informed by more than a decade of observations, indicate that the North American Exclusive Economic Zone (EEZ) acts as a sink of 160±80 Tg C yr−1, although this flux is not well constrained. The Arctic and sub-Arctic, mid-latitude Atlantic, and mid-latitude Pacific portions of the EEZ account for 104, 62, and −3.7 Tg C yr−1, respectively, while making up 51 %, 25 %, and 24 % of the total area, respectively. Combining the net uptake of 160±80 Tg C yr−1 with an estimated carbon input from land of 106±30 Tg C yr−1 minus an estimated burial of 65±55 Tg C yr−1 and an estimated accumulation of dissolved carbon in EEZ waters of 50±25 Tg C yr−1 implies a carbon export of 151±105 Tg C yr−1 to the open ocean. The increasing concentration of inorganic carbon in coastal and open-ocean waters leads to ocean acidification. As a result, conditions favoring the dissolution of calcium carbonate occur regularly in subsurface coastal waters in the Arctic, which are naturally prone to low pH, and the North Pacific, where upwelling of deep, carbon-rich waters has intensified. Expanded monitoring and extension of existing model capabilities are required to provide more reliable coastal carbon budgets, projections of future states of the coastal ocean, and quantification of anthropogenic carbon contributions.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1278
Author(s):  
Michael Glenn O’Connor ◽  
Amjad Horani ◽  
Adam J. Shapiro

Primary Ciliary Dyskinesia (PCD) is a rare, under-recognized disease that affects respiratory ciliary function, resulting in chronic oto-sino-pulmonary disease. The PCD clinical phenotype overlaps with other common respiratory conditions and no single diagnostic test detects all forms of PCD. In 2018, PCD experts collaborated with the American Thoracic Society (ATS) to create a clinical diagnostic guideline for patients across North America, specifically considering the local resources and limitations for PCD diagnosis in the United States and Canada. Nasal nitric oxide (nNO) testing is recommended for first-line testing in patients ≥5 years old with a compatible clinical phenotype; however, all low nNO values require confirmation with genetic testing or ciliary electron micrograph (EM) analysis. Furthermore, these guidelines recognize that not all North American patients have access to nNO testing and isolated genetic testing is appropriate in cases with strong clinical PCD phenotypes. For unresolved diagnostic cases, referral to a PCD Foundation accredited center is recommended. The purpose of this narrative review is to provide insight on the North American PCD diagnostic process, to enhance the understanding of and adherence to current guidelines, and to promote collaboration with diagnostic pathways used outside of North America.


2013 ◽  
Vol 50 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Richard L. Cifelli ◽  
Cynthia L. Gordon ◽  
Thomas R. Lipka

Multituberculates, though among the most commonly encountered mammalian fossils of the Mesozoic, are poorly known from the North American Early Cretaceous, with only one taxon named to date. Herein we describe Argillomys marylandensis, gen. et sp. nov., from the Early Cretaceous of Maryland, based on an isolated M2. Argillomys represents the second mammal known from the Arundel Clay facies of the Patuxent Formation (Lower Cretaceous: Aptian). Though distinctive in its combination of characters (e.g., enamel ornamentation consisting of ribs and grooves only, cusp formula 2:4, presence of distinct cusp on anterobuccal ridge, enlargement of second cusp on buccal row, central position of ultimate cusp in lingual row, great relative length), the broader affinities of Argillomys cannot be established because of non-representation of the antemolar dentition. Based on lack of apomorphies commonly seen among Cimolodonta (e.g., three or more cusps present in buccal row, fusion of cusps in lingual row, cusps strongly pyramidal and separated by narrow grooves), we provisionally regard Argillomys as a multituberculate of “plagiaulacidan” grade. Intriguingly, it is comparable in certain respects to some unnamed Paulchoffatiidae, a family otherwise known from the Late Jurassic – Early Cretaceous of the Iberian Peninsula.


2021 ◽  
Author(s):  
Cemil Arkula ◽  
Nalan Lom ◽  
John Wakabayashi ◽  
Grant Rea-Downing ◽  
Mark Dekkers ◽  
...  

<p>The western edge of the North America plate contains geological records that formed during the long-lived convergence between plates of the Panthalassa Ocean and North America. The geology of different segments along western North America indicates different polarities (eastward and westward) for subducted slabs and thereby various tectonic histories and settings. The western United States (together with Mexico) plays a key role in this debate, many geologic interpretations assume continuous eastward subduction in contrast to observations within proximal geologic segments and tomographic images of the lower mantle below North America and the eastern Pacific Ocean which suggest a more complex subduction history. In this study, we aim to evaluate the plate tectonic setting in which the Jurassic ophiolites of California formed. Geochemical data from these ophiolites suggest that they formed above a nascent intra-oceanic or continental margin subduction zone. We first developed a kinematic reconstruction of the western US geology back to the Jurassic based on published structural geological data. Importantly, we update the reconstruction of the various branches of the San Andreas fault system to determine the relative position of the ophiolite fragments and adopt a previous restoration of Basin and Range extension which we expand northward towards Washington state. We then reconstruct North American margin deformation associated with Cretaceous to Paleogene shortening and strike-slip faulting. We find no clear candidates in the geological record that may have accommodated major subduction between the Jurassic ophiolite belt and the North American margin and consequently concur with the school of thought that considers that the ophiolite belt, as well as the underlying subduction-accretionary Franciscan Complex, likely formed in the North American fore-arc. We collected paleomagnetic data to reconstruct the spreading direction of the Jurassic Californian ophiolites, by providing new paleomagnetic data from sheeted dykes of the Josephine and Mt. Diablo Ophiolites. These suggest a NE-SW paleo-ridge orientation, oblique to the North American margin which may be explained by partitioning of a dextral component of subduction obliquity relative to North America. We used this spreading direction in combination with published ages of the ophiolites and our restoration of the relative position of these ophiolites prior to post-Jurassic deformation to construct a ridge-transform system at which the Jurassic ophiolites accreted. The results will be used to evaluate which parts of the subduction systems that existed in the eastern Panthalassa Ocean may reside in the western US, and which parts may be better sought in the northern Canadian Segment or/and in the southern Caribbean region.</p>


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Bryan S. Kaplan ◽  
Marion Russier ◽  
Trushar Jeevan ◽  
Bindumadhav Marathe ◽  
Elena A. Govorkova ◽  
...  

ABSTRACT Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses. Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses.


Sign in / Sign up

Export Citation Format

Share Document