scholarly journals Quantifying the prediction accuracy of a 1-D SVAT model at a range of ecosystems in the USA and Australia: evidence towards its use as a tool to study Earth's system interactions

2015 ◽  
Vol 8 (10) ◽  
pp. 3257-3284 ◽  
Author(s):  
G. P. Petropoulos ◽  
M. R. North ◽  
G. Ireland ◽  
P. K. Srivastava ◽  
D. V. Rendall

Abstract. This paper describes the validation of the SimSphere SVAT (Soil–Vegetation–Atmosphere Transfer) model conducted at a range of US and Australian ecosystem types. Specific focus was given to examining the models' ability in predicting shortwave incoming solar radiation (Rg), net radiation (Rnet), latent heat (LE), sensible heat (H), air temperature at 1.3 m (Tair 1.3 m) and air temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from eight sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. Overall, results showed a good agreement between the model predictions and the in situ measurements, particularly so for the Rg, Rnet, Tair 1.3 m and Tair 50 m parameters. The simulated Rg parameter exhibited a root mean square deviation (RMSD) within 25 % of the observed fluxes for 58 of the 72 selected days, whereas an RMSD within ~ 24 % of the observed fluxes was reported for the Rnet parameter for all days of study (RMSD = 58.69 W m−2). A systematic underestimation of Rg and Rnet (mean bias error (MBE) = −19.48 and −16.46 W m−2) was also found. Simulations for the Tair 1.3 m and Tair 50 m showed good agreement with the in situ observations, exhibiting RMSDs of 3.23 and 3.77 °C (within ~ 15 and ~ 18 % of the observed) for all days of analysis, respectively. Comparable, yet slightly less satisfactory simulation accuracies were exhibited for the H and LE parameters (RMSDs = 38.47 and 55.06 W m−2, ~ 34 and ~ 28 % of the observed). Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. The Nash–Sutcliffe efficiency index for all parameters ranges from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the most detailed evaluation of SimSphere done so far, and the first validation of it conducted in Australian ecosystem types. Findings are important and timely, given the expanding use of the model both as an educational and research tool today. This includes ongoing research by different space agencies examining its synergistic use with Earth observation data towards the development of global operational products.

2015 ◽  
Vol 8 (3) ◽  
pp. 2437-2495 ◽  
Author(s):  
G. P. Petropoulos ◽  
M. R. North ◽  
G. Ireland ◽  
P. K. Srivastava ◽  
D. V. Rendall

Abstract. This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m (Tair 1.3 m) and Air Temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m−2, 3.23, 3.77 °C respectively). A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m−2, MBE = 67.83, 58.69 W m−2 respectively) was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash–Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research tool. This includes ongoing research by different Space Agencies examining its synergistic use with Earth Observation data towards the development of global operational products.


2021 ◽  
Vol 21 (3) ◽  
pp. 2267-2285
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Ångström exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01–0.02∘) and COBALD (6∘), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-aerosol-content measurements at altitudes below 3 km, the mean ± standard deviation difference in βaer calculated from all considered soundings is −2 % ± 37 % (−0.018 ± 0.237 Mm−1 sr−1 at 455 nm) for RALMO−COBALD and +5 % ± 43 % (+0.009 ± 0.185 Mm−1 sr−1 at 940 mm) for CHM15K−COBALD. Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial- and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the βaer vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude.


1988 ◽  
Vol 131 ◽  
Author(s):  
Thomas R. Omstead ◽  
Penny M. Van Sickle ◽  
Klavs F. Jensen

ABSTRACTThe growth of GaAs from triethylgallium (TEG) and trimethylgallium (TMG) with tertiarybutylarsine (tBAs), triethylarsenic (TEAs), and trimethylarsenic (TMAs), has been investigated by using a reactor equipped with a recording microbalance for in situ rate measurements. Rate data show that the growth with these precursors is dominated by the formation of adduct compounds in the gas lines, by adduct related parasitic gas phase reactions in the heated zone, and by the surface reactions. A model is proposed for the competition between deposition reactions and the parasitic gas phase reactions. Model predictions are in very good agreement with experimental data for all combinations of precursors except for TEG/TMAs where extensive gallium droplet formation is observed at low temperatures. Growth of reasonable quality GaAs with Hall mobilities of 7600 cm2/Vs at 77 K using TEG and tBAs is reported for the first time.


1998 ◽  
Vol 02 (02) ◽  
pp. 167-180 ◽  
Author(s):  
Tae-Hong Lim ◽  
Jung Hwa Hong

A one-dimensional poroelastic model of trabecular bone was developed to investigate the fluid effect on the mechanical behavior at the continuum level. The poroelastic properties were determined based upon an assumed drained Poisson's ratio of 0.3 and experimental results reported in the literature. Even though the free escape of the fluid through the loading end was allowed during deformation, model predictions showed that the pore pressure generated within trabecular bone would cause significant variations in total stress. The total stress increase resulted in a stiffening of trabecular bone, which supports the concept of hydraulic stiffening that has been advocated by several investigators. Model predictions showed a good agreement to the mechanical behaviors of trabecular bone specimens with marrow in situ in a uniaxial strain condition observed in previous studies. These results support the hypothesis that trabecular bone is poroelastic and the fluid effect on the mechanical behavior at the continnum level is significant. Thus, the incorporation of the fluid effect in future studies is recommended to improve our understanding of mechanical behavior of trabecular bone.


2019 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct-sun and zenith-sky. The direct-sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


Author(s):  
Wiwin Ambarwulan ◽  
Widiatmaka ◽  
Syarif Budhiman

The  paper  describes inherent optical properties  (IOP)  of  the  Berau  coastal  waters  derived from in  situ measurements  and Medium  Resolution  Imaging  Spectrometer  (MERIS) satellite  data. Field  measurements  of optical  water,  total  suspended  matter  (TSM), and  chlorophyll-a  (Chl-a) concentrations were carried out during the dry season of 2007. During this periode, only four MERISdata were  coincided with in  situ measurements on 31 August  2007. The MERIS  top-of-atmosphere radiances were atmospherically corrected using the MODTRAN radiative transfer model. The in situ optical  measurement  have  been  processed  into apparent optical properties  (AOP) and sub  surface irradiance. The remote sensing reflectance of in situ measurement as well as MERIS data were inverted into  the  IOP  using quasi-analytical algorithm  (QAA).  The  result  indicated  that coefficient  of determination (R 2) of backscattering coefficients of suspended particles (bbp) increased with increasing wavelength,  however  the  R2 of  absorption  spectra  of  phytoplankton  (aph)  decreased  with  increasing wavelength.


2020 ◽  
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here, we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in-situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to respectively 455 nm and 940 nm using the Angstrom exponent profiles retrieved from COBALD data. To account for the different receiver field of view (FOV) angles between the two lidars (0.01–0.02°) and COBALD (6°), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both RALMO and CHM15K achieve a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude, and including fine structures in the aerosol’s vertical distribution. For altitudes below 2 km, the mean ± standard deviation difference in βaer is + 6 % ± 40 % (+ 0.005 ± 0.319 Mm−1 sr−1) for RALMO – COBALD at 455 nm, and + 13 % ± 51 % (+ 0.038 ± 0.207 Mm−1 sr−1) for CHM15K – COBALD at 940 nm. The large standard deviations can be at least partly attributed to atmospheric variability effects, associated with the balloon’s horizontal drift with altitude (away from the lidar beam) and the different integration times of the two techniques. Combined with the high spatial and temporal variability of atmospheric aerosols, these effects often lead to a slight altitude displacement between aerosol backscatter features that are seen by both techniques. For altitudes between 2–6 km, the absolute standard deviations of both RALMO and CHM15K decrease (below 0.13 and 0.16 Mm−1sr−1, respectively), while their corresponding relative deviations increase (often exceeding 100 % COBALD of the signal). This is due to the low aerosol content (i.e. low absolute backscattered signal) in the free troposphere, and the vertically decreasing signal-to-noise ratio of the lidar measurements (especially CHM15K). Overall, we conclude that the βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in-situ measurements by COBALD sondes up to 6 km altitude.


2019 ◽  
Vol 19 (16) ◽  
pp. 10619-10642 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct Sun and zenith sky. The direct-Sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the Sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-Sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


2007 ◽  
Vol 7 (11) ◽  
pp. 2797-2815 ◽  
Author(s):  
J.-C. Raut ◽  
P. Chazette

Abstract. Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56–0.034 i at 355 nm and 1.59–0.040 i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.


Sign in / Sign up

Export Citation Format

Share Document