scholarly journals Review of "A novel causal structure-based framework for comparing basin-wide water-energy-food-ecology nexuses applied to the data-limited Amu Darya and Syr Darya river basins"

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Haiyang Shi ◽  
Geping Luo ◽  
Hongwei Zheng ◽  
Chunbo Chen ◽  
Jie Bai ◽  
...  

Abstract. The previous comparative studies on watersheds were mostly based on the comparison of dispersive characteristics, which lacked systemicity and causality. We proposed a causal structure-based framework for basin comparison based on the Bayesian network (BN), and focus on the basin-scale water-energy-food-ecology (WEFE) nexuses. We applied it to the Syr Darya river basin (SDB) and the Amu Darya river basin (ADB) that caused the Aral Sea disaster. The causality of the nexuses was effectively compared and universality of this framework was discussed. In terms of changes of the nexuses, the sensitive factor for the water supplied to the Aral Sea changed from the agricultural development during the Soviet Union period to the disputes in the WEFE nexuses after the disintegration. The water-energy contradiction of SDB is more severe than that of ADB partly due to the higher upstream reservoir interception capacity. It further made management of the winter surplus water downstream of SDB more controversial. Due to this, the water-food-ecology conflict between downstream countries may escalate and turn into a long-term chronic problem. Reducing water inflow to depressions and improving the planting structure prove beneficial to the Aral Sea ecology and this effect of SDB is more significant. The construction of reservoirs on the Panj river of the upstream ADB should be cautious to avoid an intense water-energy conflict as SDB. It is also necessary to promote the water-saving drip irrigation and to strengthen the cooperation.


2021 ◽  
Vol 25 (2) ◽  
pp. 901-925
Author(s):  
Haiyang Shi ◽  
Geping Luo ◽  
Hongwei Zheng ◽  
Chunbo Chen ◽  
Olaf Hellwich ◽  
...  

Abstract. The previous comparative studies on watersheds were mostly based on the comparison of dispersive characteristics, which lacked systemicity and causality. We proposed a causal structure-based framework for basin comparison based on the Bayesian network (BN) and focus on the basin-scale water–energy–food–ecology (WEFE) nexus. We applied it to the Syr Darya River basin (SDB) and the Amu Darya River basin (ADB), of which poor water management caused the Aral Sea disaster. The causality of the nexus was effectively compared and universality of this framework was discussed. In terms of changes in the nexus, the sensitive factor for the water supplied to the Aral Sea changed from the agricultural development during the Soviet Union period to the disputes in the WEFE nexus after the disintegration. The water–energy contradiction of the SDB is more severe than that of the ADB, partly due to the higher upstream reservoir interception capacity. It further made management of the winter surplus water downstream of the SDB more controversial. Due to this, the water–food–ecology conflict between downstream countries may escalate and turn into a long-term chronic problem. Reducing water inflow to depressions and improving the planting structure prove beneficial to the Aral Sea ecology, and this effect of the SDB is more significant. The construction of reservoirs on the Panj River of the upstream ADB should be cautious to avoid an intense water–energy conflict such as the SDB's. It is also necessary to promote the water-saving drip irrigation and to strengthen the cooperation.


2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Zhibin Liu ◽  
Tie Liu ◽  
Yue Huang ◽  
Yangchao Duan ◽  
Xiaohui Pan ◽  
...  

The intensity of agricultural activities and the characteristics of water consumption affect the hydrological processes of inland river basins in Central Asia. The crop water requirements and water productivity are different between the Amu Darya and Syr Darya river basins due to the different water resource development and utilization policies of Uzbekistan and Kazakhstan, which have resulted in more severe agricultural water consumption of the Amu Darya delta than the Syr Darya delta, and the differences in the surface runoff are injected into the Aral Sea. To reveal the difference in water resource dissipation, water productivity, and its influencing factors between the two basins, this study selected the irrigation areas of Amu Darya delta (IAAD) and Syr Darya delta (IASD) as typical examples; the actual evapotranspiration (ETa) was retrieved by using the modified surface energy balance algorithm for land model (SEBAL) based on high spatial resolution Landsat images from 2000 to 2020. Land use and cover change (LUCC) and streamflow data were obtained to analyze the reasons for the spatio-temporal heterogeneity of regional ETa. The water productivity of typical crops in two irrigation areas was compared and combined with statistical data. The results indicate that: (1) the ETa simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method and ground-measured data well, with all the correlation coefficients higher than 0.7. (2) In IAAD, the average ETa was 1150 mm, and the ETa had shown a decreasing trend; for the IASD, the average ETa was 800 mm. The ETa showed an increasing trend with low stability due to a large amount of developable cultivated land. The change of cultivated land dominated the spatio-temporal characteristics of ETa in the two irrigation areas (3). Combined with high spatial resolution ETa inversion results, the water productivity of cotton and rice in IAAD was significantly lower than in IASD, and wheat was not significantly different, but all were far lower than the international average. This study can provide useful information for agricultural water management in the Aral Sea region.


Author(s):  
S. Nazrul Islam

Chapter 4 provides a few case studies of rivers to illustrate the consequences of the Commercial approach. These rivers are: the Colorado River of the United States; the Murray-Darling river system of Australia; the Amu Darya and Syr Darya of the former Soviet Union; the Nile River of Africa; and the Indus River of South Asia. It shows that in each case, the application of the Commercial approach has led to river fragmentation and excessive withdrawal of water, leading to exhaustion of rivers, which in turn led to salinity intrusion and erosion, subsidence, and desiccation of the deltas. The ecology of the river basins has been damaged, including loss of aquatic and terrestrial biodiversity. In case of the Amu Darya and Syr Darya Rivers, this damage includes the destruction of the Aral Sea, once considered the second-largest inland waterbody of the world. In each case, the Commercial approach has led to conflicts among co-riparian countries.


Zootaxa ◽  
2017 ◽  
Vol 4277 (3) ◽  
pp. 435
Author(s):  
RYAN J. THONI ◽  
EVGENIY SIMONOV ◽  
OLEG ARTAEV ◽  
SHAIGUL ASYLBAEVA ◽  
SERGEK UULU AIBEK ◽  
...  

Exostoma oschanini, presently treated as a junior synonym of Glyptosternon reticulatum, is revalidated within Glyptosternon based on a phylogenetic analysis of the CO1 gene and morphological characters. Glyptosternon oschanini is known to occur in tributaries of the Syr Darya River in Uzbekistan and Kyrgyzstan and may also occur in the Amu Darya River drainage. A morphological diagnosis and description are provided for G. oschanini. Exostoma gracile is a junior synonym of G. oschanini rather than of G. reticulatum. 


2020 ◽  
Vol 15 (2) ◽  
pp. 136-147

For many decades, Uzbekistan has been one of the largest cotton producers in the world. The irrigation water needed for these high production levels has been delivered by the massive diversion of the Amu Darya and Syr Darya rivers, which naturally flowed into the Aral Sea. This diversion for agriculture was the main cause of the rapid decline of the Aral Sea, which is at only 10% of its original size today. The traditional method of irrigation, which relies on simple open canal systems, is highly inefficient for managing the region’s critical and limited water resource. It has been qualitatively estimated, for example, that irrigation water lost to evaporation and system inefficiencies is quite large. With the future availability of water at risk for agriculture in Central Asia, primarily due to the loss of glacial volume from global warming, along with declines in seasonal snowpack, it is clear that new approaches to water management are needed. Any serious efforts to restore the Aral Sea and its ecological services would also reduce supplies of irrigation water for Uzbekistan. While regional conflict over water is unlikely, it must be considered since Uzbekistan is a downstream country among several that rely on the Amu Darya and Syr Darya rivers for most of their water supplies. To insure against these risks to cotton production and the underlying economy, better irrigation technologies are needed across Uzbekistan. However, these technologies can be quite expensive, especially given that water is still nearly free. In this case study we explore the use of real options analysis (ROA) to look for optimal investment strategies in efficient irrigation technologies in light of variable climate and policy uncertainties.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chelsea Ackroyd ◽  
S. McKenzie Skiles ◽  
Karl Rittger ◽  
Joachim Meyer

High Mountain Asia (HMA) has the largest expanse of snow outside of the polar regions and it plays a critical role in climate and hydrology. In situ monitoring is rare due to terrain complexity and inaccessibility, making remote sensing the most practical way to understand snow patterns in HMA despite relatively short periods of record. Here, trends in snow cover duration were assessed using MODIS between 2002 and 2017 across the headwaters of the region’s primary river basins (Amu Darya, Brahmaputra, Ganges, Indus, and Syr Darya). Data limitations, associated with traditional binary mapping and data gaps due to clouds, were addressed with a daily, spatially and temporally complete, snow cover product that maps the fraction of snow in each pixel using spectral mixture analysis. Trends in fractional snow cover duration (fSCD) were calculated at the annual and monthly scale, and across 1,000 m elevation bands, and compared to trends in binary snow cover duration (SCD). Snow cover is present, on average, for 102 days across all basin headwaters, with the longest duration in western basins and shortest in eastern basins. Broadly, snow cover is in decline, which is most pronounced in elevation bands where snow is most likely to be present and most needed to sustain glaciers. Some of the strongest negative trends in fSCD were in the Syr Darya, which has 13 fewer days between 4,000–5,000 m, and Brahmaputra, which has 31 fewer days between 5,000–6,000 m. The only increasing tendency was found in the Indus between 2,000 and 5,000 m. There were differences between fSCD and SCD trends, due to SCD overestimating snow cover area relative to fSCD.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3385
Author(s):  
Ye Lyu ◽  
Yue Huang ◽  
Anming Bao ◽  
Ruisen Zhong ◽  
Han Yang

In this study, the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin in Central Asia were selected as typical study areas. Temporal/spatial changes from 2002 to 2016 in the terrestrial water storage (TWS) and the groundwater storage (GWS) were analyzed, based on RL06 Mascon data from the Gravity Recovery and Climate Experiment (GRACE) satellite, and the sum of soil water content, snow water equivalent and canopy water data that were obtained from Global Land Data Assimilation System (GLDAS). Combing meteorological data and land use and cover change (LUCC) data, the joint impact of both human activities and climate change on the terrestrial water storage change (TWSC) and the groundwater storage change (GWSC) was evaluated by statistical analysis. The results revealed three findings: (1) The TWS retrieved by CSR (Center for Space Research) and the JPL (Jet Propulsion Laboratory) showed a decreasing trend in the three basins, and the variation of TWS showed a maximum surplus in spring (March–May) and a maximum deficit in autumn (September–November). (2) The decreasing rates of groundwater storage that were extracted, based on JPL and CSR Mascon data sets, were −2.17 mm/year and −3.90 mm/year, −3.72 mm/year and −4.96 mm/year, −1.74 mm/year and −3.36 mm/year in the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin, respectively. (3) In the Amu Darya river basin, annual precipitation showed a decreasing trend, while the evapotranspiration rate showed an increasing trend due to an increasing temperature, and the TWS decreased from 2002 to 2016 in most areas of the basin. However, in the middle reaches of the Amu Darya river basin, the TWS increased due to the increase in cultivated land area, water income from flooded irrigation, and reservoir impoundment. In the upper reaches of the Syr Darya river basin, the increase in precipitation in alpine areas leads to an increase in glacier and snow meltwater, which is the reason for the increase in the TWS. In the middle and lower reaches of the Syr Darya river basin, the amount of evapotranspiration dissipation exceeds the amount of water replenished by agricultural irrigation, which leads to a decrease in TWS and GWS. The increase in precipitation in the northwest of the Balkhash lake basin, the increase in farmland irrigation water, and the topography (higher in the southeast and lower in the northwest) led to an increase in TWS and GWS in the northwest of the Balkhash lake basin. This study can provide useful information for water resources management in the inland river basins of Central Asia.


Sign in / Sign up

Export Citation Format

Share Document