scholarly journals Experimental study of non-Darcian flow characteristics in permeable stones

2021 ◽  
Author(s):  
Zhongxia Li ◽  
Junwei Wan ◽  
Tao Xiong ◽  
Hongbin Zhan ◽  
Linqing He ◽  
...  

Abstract. This study provides experimental evidence of Forchheimer flow and transition between different flow regimes from the perspective of pore size of permeable stone. We have firstly carried out the seepage experiments of permeable stones with four different mesh sizes, including 24 mesh size, 46 mesh size, 60 mesh size, and 80 mesh size, which corresponding to mean particle sizes (50 % by weight) of 0.71 mm, 0.36 mm, 0.25 mm, and 0.18 mm. The seepage experiments show that obvious deviation from Darcian flow regime is visible. In addition, the critical specific discharge corresponding to the transition of flow regimes (from pre-Darcian to post-Darcian) increases with the increase of particle sizes. When the “pseudo” hydraulic conductivity (K) (which is computed by the ratio of specific discharge and the hydraulic gradient) increases with the increase of specific discharge (q), the flow regime is denoted as the pre-Darcian flow. After the specific discharge increases to a certain value, the “pseudo” hydraulic conductivity begins to decrease, and this regime is called the post-Darcian flow. In addition, we use the mercury injection experiment to measure the pore size distribution of four permeable stones with different particle sizes, and the mercury injection curve is divided into three stages. The beginning and end segments of the mercury injection curve are very gentle with relatively small slopes, while the intermediate mercury injection curve is steep, indicating that the pore size in permeable stones is relatively uniform. The porosity decreases as the mean particle sizes increases, and the mean pore size can faithfully reflect the influence of particle diameter, sorting degree and arrangement mode of porous medium on seepage parameters. This study shows that the size of pores is an essential factor for determining the flow regimes. In addition, the Forchheimer coefficients are also discussed in which the coefficient A (which is related to the linear term of the Forchheimer equation) is linearly related to 1/d 2 as A = 0.0025 (1/d 2) + 0.003; while the coefficient B (which is related to the quadratic term of the Forchheimer equation) is a quadratic function of 1/d as B =1.14E-06 (1/d)2 − 1.26E-06 (1/d). The porosity (n) can be used to reveal the effect of sorting degree and arrangement on seepage coefficient. The larger porosity leads to smaller coefficients A and B under the condition of the same particle size.

2020 ◽  
Author(s):  
Marta Ferrazzi ◽  
Roberto Vivian ◽  
Gianluca Botter

<p>The simultaneous growth in climate-driven fluctuations of river flow regimes and global freshwater demand threatens the security of anthropogenic and ecologic uses of streamflows. Dams have long been designed to reconcile the conflict between patterns of human water uses and the temporal variability of flows, and are operated worldwide. In this context, there is a need to understand the combined influence of reservoir operations and climate variability on regulated streamflow regimes, and disclose whether observed hydroclimatic fluctuations can be accommodated by existing reservoirs. Here, these issues are addressed through a quantitative analysis of flow regime alterations by dams as driven by heterogeneous uses and variable regulation capacities (i.e., storage capacity scaled to the average inflow). In particular, the concept of streamflow stability is used to compare inter-annual changes in the occurrence probability of synchronous flows observed upstream and downstream of dams. The selection of structures considered in this study is distributed throughout the entire Central-Eastern United States, so as to span heterogeneous hydroclimatic settings and reservoir functions (i.e., flood control, water supply, hydropower production and multi-purpose). Our results reveal that reservoirs devoted to flood control and those operating for water supply produce distinctive impacts on flow regimes. Flood control does not alter the mean discharge downstream, but decreases long-term discharge variability and, thus, homogenize regional flow dynamics. However, regulation for flood control is unable to mitigate the impact of variable climate drivers on the stability of streamflows and hydroclimatic fluctuations typical of unregulated regimes are transferred unaltered in downstream reaches, or even amplified. Water supply, instead, reduces the mean flow of regulated reaches but increases the long-term streamflow variability, thereby enhancing the regional heterogeneity of flows. In this case, regulation smooths inter-annual changes of flow regimes, though at the cost of systematically filtering out medium-to-high discharges, with negative consequences on stream ecosystems. The observed connection between reservoir functions and the features of downstream flow regime alterations by dams represents a critical step forward for a sustainable management of water resources.</p>


Author(s):  
James J. Bell ◽  
David K.A. Barnes

Sponge communities were sampled at 3 m depth intervals at six sites experiencing different flow regimes at Lough Hyne, Ireland. Sponges were identified and classified within the following morphological groups: encrusting, massive, globular, pedunculate, tubular, flabellate, arborescent, repent and papillate morphological types on both vertical (≈90°) and inclined (≈45°) surfaces.Differences in the proportional abundance of the sponge body forms and density (sponge m−2) were observed between sites and depths. The density of sponges increased with depth at sites of slight to moderate current flow, but not at the site where current flow was turbulent. Morphological diversity of sponge communities decreased with increasing current flow due to the removal of delicate forms such as pedunculate and arborescent shaped sponges. Massive and encrusting morphologies dominated at the high-energy sites (fast and turbulent flow regimes) due to a high basal area to volume ratio, which prevents removal from cliff surfaces. However, pedunculate, papillate and arborescent types dominated at the low current sites as these shapes may help to prevent the settlement of sediment on sponge surfaces. Bray–Curtis Similarity analysis and Correspondence Analysis were used to distinguish between five different morphological communities.


1985 ◽  
Vol 50 ◽  
Author(s):  
J-E. Andersson ◽  
O. Persson

AbstractThe results from a large number of single-hole packer tests in crystalline rock from three test sites in Sweden have been analysed statistically. Average hydraulic conductivity values for 25 m long test intervals along boreholes with a maximal length of about 700 m are used in this study. A comparison between steady state and transient analysis of the same test data has been performed.The mean vaule of the hydraulic conductivity determined from steady state analysis was found to be about two to three times higher compared to transient analysis. However, in some cases the steady state analysis resulted in 10 to 20 times higher values compared to the transient analysis. Such divergence between the two analysis methods may be caused by deviations from the assumed flow pattern, borehole skin effects and influence of hydraulic boundaries.


Author(s):  
Mahmud R. Amin ◽  
Nallamuthu Rajaratnam ◽  
David Z. Zhu

Abstract This work presents an analytical study of the flow and energy loss immediately downstream of rectangular sharp-crested weirs for free and submerged flows, using the theory of plane turbulent jets and the analysis of some relevant studies. The flow regimes downstream of the sharp-crested weir is characterized as the impinging jet and surface flow regimes. Based on the flow characteristics and the downstream tailwater depths, each flow regime is further classified, and the relative energy loss equation is developed. It is found that significant energy loss occurs for the regime of supercritical flow and the upper stage of impinging jet flow. The energy loss for the submerged flow regime is minimal.


1969 ◽  
Vol 9 (03) ◽  
pp. 293-300 ◽  
Author(s):  
J.E. Varnon ◽  
R.A. Greenkorn

Abstract This paper reports an investigation of unstable fingering in two-fluid flow in a porous medium to determine if lambda the dimensionless finger width, is unique For a viscous finger A is the ratio of finger width to the distance between the tips of the two trailing fingers adjacent to the leading finger. For a gravity finger lambda is defined as the ratio of finger width, to "height" of the medium perpendicular to hulk flow. This work confirms previous experiments and existing theory that for viscous fingering lambda approaches a value of 0.5 with increasing ratio of viscous to interfacial force. However, for a given fluid pair and given, medium, this ratio can he increased only by increasing the, velocity. Experiments on gas liquid systems show that the asymptotic value of lambda with velocity is not always 0.5. Apparently, for gas-liquid systems, the influence of the interfacial force cannot always he eliminated by increasing the velocity. For such systems lambda is a function of fluid pair and media permeability. If the gravity force normal to the hulk permeability. If the gravity force normal to the hulk flow is active, it damps out the viscous fingers except for an underlying or overlying finger. The dimensionless width of this gravity finger strongly depends on velocity and height of the medium, as well as the fluid and media properties. The existing experiments and theories are reviewed and the gravity, stable, and viscous flow regimes are described in view of these experiments and theories. The existence of a gravity-dominated unstable regime, a gravity-viscous balanced stable regime, and a viscous-anminated regime was demonstrated experimentally by increasing flow velocity bin a rectangular glass head model. Asymptotic values of the dimensionless finger width were determined in various-sized Hele-Shaw models with gravity perpendicular and parallel to flow. The dimensionless perpendicular and parallel to flow. The dimensionless finger width lambda was determined as a function of applied force, flow resistance, and fluid properties. The results are interpreted dimensionally. Some comments are made concerning possible scaling and meaningful extensions of theory to describe these regimes in three-dimensional flow. Previous description of unstable two-fluid flow in porous media is mainly restricted to studies of viscous-dominated instability. The direction of this study is to provide data and understanding to consider the more realistic problem of predicting flow in three dimensions that may result in instabilities that are combinations of all, four flow regimes. Introduction The unstable flow of two fluids is characterized by interface changes between the fluids as a result of changes in relative forces. In a given porous medium and for a given fluid pair the gravity force dominates flow at low displacement velocities. As the velocity increases the viscous forces begin to affect flow significantly, and eventually there is a balance between effects of the gravity and viscous forces. As velocity increases further, the viscous force dominates flow. In the plane parallel to gravity, four flow regimes result as the velocity is increased: a gravity-induced stable flow regime; a gravity-dominated unstable flow regime; a stable regime resulting from a balance between gravity and viscous forces; and a viscous-induced unstable flow regime. The gravity-induced stable regime is represented schematically in Fig. 1a. This general flow pattern persists with the displacing fluid contacting all of persists with the displacing fluid contacting all of the in-place fluid until the interface becomes parallel to the bulk flow. At this velocity a gravity finger forms, and the interface, is unstable in that the length of the gravity finger grows and the fluid behind the nose of the finger is practically nonmobile because of the small pressure gradient along the finger. The gravity-dominated unstable flow is shown schematically in Fig. 1b. As the injection rate is increased, the gravity finger thickens, perhaps until it spans the medium creating a stable interface where all of the in-place, fluid is again mobile. This regime would, not occur in the absence of gravity. It occurs due to the counter effects of the gravity and viscous forces (Fig. 1c). As the velocity of the displacing fluid increases, the viscous forces dominate, and, the interface breaks into viscous fingers (Fig. 1d). SPEJ p. 293


2011 ◽  
Vol 694 ◽  
pp. 575-579
Author(s):  
Jian Hui Zhang ◽  
Hai Bo Sun

Fe3O4 ferrofluids with uniform magnetic particles were prepared via improved chemical coprecipation technique. A narrow distribution of 8.6-10.8 nm particle sizes was obtained from the magnetization curve using the free-form-model based on Bayesian inference theory. The mean particle diameter about 9.8 nm is consistent with the XRD and SEM results. The hydrodynamic properties of ferrofluids were investigated with different applied magnetic field and shear rate. The experimental results show that diluted ferrofluid and concentrated ferrofluid are Newtonian-fluid and Bingham-plastic fluid, respectively.


2002 ◽  
Vol 34 (3) ◽  
pp. 223-229 ◽  
Author(s):  
O.I. Getman ◽  
V.V. Holoptsev ◽  
V.V. Panichkina ◽  
I.V. Plotnikov ◽  
V.K. Soolshenko

The mechanical properties and microstructure formation processes in Si3N4+3% AI2O3+5% Y2O3(Yb2O3) ceramic compacts sintered under microwave heating (MWH) and under traditional heating (TH) were investigated. The initial ceramic materials were powder blends of silicon nitride with oxides. The mean powder particle sizes were 0.5-1.0 mim. The content of alfa-phase in the Si3N4 powder was more than 95 %. The samples were sintered at 1800BC in nitrogen at normal pressure, the heating rate in all experiments was 60BC/min. The Vickers hardness (HV), fracture toughness (K1C) and bending strength (on) were determined. The microstructures of fracture surfaces of samples were studied by SEM. Quantitative microstructure analysis was carried out. It was shown that the values of HV and Kic of ceramic samples sintered under MWH at 1800BC rose steadily with the sintering time. This caused an increase in density, which reached maximum as fast as after 30 min of the MWH sintering; the mass loss at that time amounted to 3-4 %. The porosity of sintered samples with an addition of yttria was less than 1 %, that of ytterbia was greater, 2.4 %. For similar values of relative density, the hardness and fracture toughness of ceramic samples produced under MWH were higher as compared with those of samples sintered under TH. The microstructure of samples had the form of elongated grains in a matrix of polyhedral grains of the beta-Si3N4 phase. Measurements showed the mean size of grains in samples produced by MWH to be greater that in samples produced by TH. A larger number of elongated grains were formed. It was concluded that for sintering under MWH of Si3N4-based ceramics the growth of elongated beta-Si3N4 grains and formation of a "reinforced" microstructure were promoted and thereby improved the mechanical properties of such ceramics.


Irriga ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 194-203
Author(s):  
Acácio Perboni ◽  
José Antonio Frizzone ◽  
Rubens Duarte Coelho ◽  
Rogério Lavanholi ◽  
Ezequiel Saretta

SENSIBILIDADE DE GOTEJADORES À OBSTRUÇÃO POR PARTÍCULAS DE AREIA     ACÁCIO PERBONI1; JOSÉ ANTONIO FRIZZONE2; RUBENS DUARTE COELHO2; ROGÉRIO LAVANHOLI3 E EZEQUIEL SARETTA4   1 Professor, IFMT, Campo Novo do Parecis - MT, [email protected] 2 Professor, Departamento de Engenharia de Biossistemas, ESALQ/USP, Piracicaba - SP, [email protected]; [email protected] 3 Doutorando, Departamento de Engenharia de Biossistemas, ESALQ/USP, Piracicaba - SP, [email protected] 4 Professor, UFSM, Cachoeira do Sul - RS, [email protected]     1 RESUMO   O objetivo deste trabalho foi avaliar a influência do tamanho e concentração de partículas de areia e da velocidade de fluxo da água nas linhas na sensibilidade à obstrução de um modelo de gotejador do tipo cilíndrico, não regulado, com vazão nominal de 2 L h-1. Foram realizados ensaios de obstrução com areia misturada em água destilada, combinando os seguintes fatores: três faixas granulométricas de partículas de areia, três concentrações de areia e três velocidades de fluxo de água no tubo. A vazão de 32 gotejadores foi medida a cada doze minutos por meio de um sistema automatizado. Nos ensaios com faixa granulométrica de 0,105 a 0,25 mm, ocorreu a obstrução nas concentrações de 250 e 500 mg L-1, para os regimes de escoamento de transição e turbulento. Já na faixa granulométrica de 0,25 a 0,5 mm, ocorreu obstrução nas concentrações de 100, 250 e 500 mg L-1, para os regimes de escoamento de transição e turbulento. A obstrução de gotejadores ocorreu de forma aleatória nas oito linhas. Após obstruídos os gotejadores não desobstruíram com o passar do tempo de ensaio.   Palavras-chave: microirrigação, partículas sólidas inertes, granulometria, concentração     PERBONI, A.; FRIZZONE, J. A.; COELHO, R. D.; LAVANHOLI, R.; SARETTA, E. SENSITIVITY OF DRIPPERS TO CLOGGING CAUSED BY SAND PARTICLES     2 ABSTRACT   The purpose of this research was to assess the influence of concentration and size of sand particles, and water flow velocity in laterals on the sensitivity of drippers to clogging. A cylindrical integrated non-pressure compensating dripper of 2 L h-1 nominal flow rate was used. Experiments were undertaken using distilled water and sand particles, according to the following levels: (a) three ranges of particles sizes; (b) three concentrations of particles; and, (c) three flow velocities in the laterals. The flow rate of 32 drippers was measured at every 12 minutes by an automated system. Within the range of particle sizes from 0.105 to 0.25 mm, clogging of emitters was observed under transient and turbulent flow regimes, and under particles concentration of 250 and 500 mg L-1. Within the range of particles sizes from 0.25 to 0.5 mm, clogging was observed for all concentrations under transient and turbulent flow regimes. Clogging of emitters occurred as a random phenomenon. Once clogged, emitters did not recover their initial flow rate.    Keywords: micro irrigation, inert solid particles, particle size, concentration


Sign in / Sign up

Export Citation Format

Share Document