scholarly journals Mechanical properties of microwave sintered Si3N4-based ceramics

2002 ◽  
Vol 34 (3) ◽  
pp. 223-229 ◽  
Author(s):  
O.I. Getman ◽  
V.V. Holoptsev ◽  
V.V. Panichkina ◽  
I.V. Plotnikov ◽  
V.K. Soolshenko

The mechanical properties and microstructure formation processes in Si3N4+3% AI2O3+5% Y2O3(Yb2O3) ceramic compacts sintered under microwave heating (MWH) and under traditional heating (TH) were investigated. The initial ceramic materials were powder blends of silicon nitride with oxides. The mean powder particle sizes were 0.5-1.0 mim. The content of alfa-phase in the Si3N4 powder was more than 95 %. The samples were sintered at 1800BC in nitrogen at normal pressure, the heating rate in all experiments was 60BC/min. The Vickers hardness (HV), fracture toughness (K1C) and bending strength (on) were determined. The microstructures of fracture surfaces of samples were studied by SEM. Quantitative microstructure analysis was carried out. It was shown that the values of HV and Kic of ceramic samples sintered under MWH at 1800BC rose steadily with the sintering time. This caused an increase in density, which reached maximum as fast as after 30 min of the MWH sintering; the mass loss at that time amounted to 3-4 %. The porosity of sintered samples with an addition of yttria was less than 1 %, that of ytterbia was greater, 2.4 %. For similar values of relative density, the hardness and fracture toughness of ceramic samples produced under MWH were higher as compared with those of samples sintered under TH. The microstructure of samples had the form of elongated grains in a matrix of polyhedral grains of the beta-Si3N4 phase. Measurements showed the mean size of grains in samples produced by MWH to be greater that in samples produced by TH. A larger number of elongated grains were formed. It was concluded that for sintering under MWH of Si3N4-based ceramics the growth of elongated beta-Si3N4 grains and formation of a "reinforced" microstructure were promoted and thereby improved the mechanical properties of such ceramics.

2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2014 ◽  
Vol 633 ◽  
pp. 447-450 ◽  
Author(s):  
De Tian Wan ◽  
Yi Wang Bao ◽  
Yuan Tian ◽  
Yan Qiu ◽  
Hua Zhao

Evaluation of the mechanical properties at ultra-high temperatures for ceramic composites is necessary and important for the safety of designing the ceramic components. In this work, a new and novel test method named as local ultra-high temperature together with applied load method (LUHTAL), was developed to determine the tensile, compressive, bending strength and fracture toughness of ceramic composites. The four point bending load was conducted to measure the bending strength and fracture toughness of ceramic composites after the center of the sample was heated up to about 1500-2000°C by oxygen-assisted spray combustion. To check the availability and reliability for this method, typical ceramic materials including ZrB2/SiC and C/SiC fiber reinforced composite coated with Si, were used as the testing samples. It is indicated that this method is good and feasible for evaluating the mechanical properties of the ceramic composite at ultra-high temperatures in air.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2014 ◽  
Vol 616 ◽  
pp. 27-31 ◽  
Author(s):  
Tomohiro Kobayashi ◽  
Katsumi Yoshida ◽  
Toyohiko Yano

The CNT/B4C composite with Al2O3 additive was fabricated by hot-pressing following extrusion molding of a CNT/B4C paste, and mechanical properties of the obtained composite were investigated. Many CNTs in the composite aligned along the extrusion direction from SEM observation. 3-points bending strength of the composite was slightly lower than that of the monolithic B4C. Elastic modulus and Vickers hardness of the composite drastically decreased with CNT addition. Fracture toughness of the composite was higher than that of the monolithic B4C.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2799
Author(s):  
Awais Qadir ◽  
Péter Pinke ◽  
Ján Dusza

In this overview, the results published to date concerning the development, processing, microstructure characteristics, and properties of silicon nitride/carbon nanotube (Si3N4 + CNTs) composites are summarized. The influence of the different processing routes on the microstructure development of the Si3N4 + CNTs is discussed. The effects of the CNTs addition on the mechanical properties—hardness, bending strength and fracture toughness—and tribological characteristics—wear rate and coefficient of friction—are summarized. The characteristic defects, fracture origins, toughening and damage mechanisms occurring during the testing are described. The influence of the CNTs’ addition on the thermal and functional properties of the composites is discussed as well. New trends in the development of these composites with significant potential for future applications are outlined.


Holzforschung ◽  
2019 ◽  
Vol 73 (9) ◽  
pp. 797-806 ◽  
Author(s):  
Luka Krajnc ◽  
Niall Farrelly ◽  
Annette M. Harte

AbstractThe use of acoustic velocity for different purposes is becoming widespread in the forestry industry. However, there are conflicting reports on how well this technology reflects the mechanical properties of trees. In this study, the prediction of timber quality using acoustic technology was evaluated on mature standing trees of three softwood species. The velocity in 490 standing trees was measured in several directions (longitudinal, radial and tangential). A sub-sample of trees was felled and the acoustic velocity was measured in 120 logs which were then sawn into structural-sized timber. A total of 1383 boards were tested for bending, as were small clear specimens extracted from the structural-sized boards. The mean tree values of the timber grade-determining properties (elastic modulus, bending strength and density) of both specimen sizes were related to the acoustic velocities and tree slenderness. The correlations between the mean tree mechanical properties and acoustic velocities were relatively low, most likely due to a high ratio of diameter to measurement distance. The transverse directions showed similar correlations with mechanical properties in larger-diameter trees to the longitudinal direction, as did tree slenderness. The results suggest that while the acoustic velocity in the longitudinal direction can reflect the mean tree mechanical properties in small-diameter trees, alternatives are needed to achieve the same in larger-diameter trees.


Cerâmica ◽  
2018 ◽  
Vol 64 (372) ◽  
pp. 491-497
Author(s):  
A. A. de Almeida Junior ◽  
G. L. Adabo ◽  
B. R. Galvão ◽  
D. Longhini ◽  
B. G. Simba ◽  
...  

Abstract Four dental porcelains for covering zirconia were sintered (fired) at 910-960 °C and characterized, focusing in analyzing reliability, physical and mechanical properties. Samples with relative density close to 99% presented leucite crystallization apart from residual amorphous phase. Hardness between 491±23 and 575±32 HV was different among all ceramics. Fracture toughness between 1.13±0.11 and 1.42±0.25 MPa.m1/2 was statistically different. Bending strength results were not different for three porcelain groups (73±9 to 75±12 MPa), with the exception of one specific group (62±4 MPa). Weibull analysis indicated bending strength between 73 and 75 MPa, Weibull modulus (m) between 5.7 and 7.1, while the ceramic with strength of 60 MPa presented m=13.6. The use of classical theory of fracture mechanics associated to the results of properties obtained in this work indicated the critical failure size in these ceramics lays between 65 and 90 μm and the theoretical fracture energy of porcelains is approximately from 10.5 to 16.3 J/m. It was concluded that the porcelains had different behavior, and it seems that there is no clear relationship among the studied properties.


2011 ◽  
Vol 383-390 ◽  
pp. 3366-3373
Author(s):  
Shuo Qin ◽  
Bo Lin Wu ◽  
Shiao Zhao ◽  
Cong Chang Ma ◽  
Zu Sheng Hu

Red mud is the main solid residue generated during the production of alumina by means of the Bayer process. In order to expand the comprehensive utilization field of red mud and develop new ceramic products with low radioactivity utilizing red mud, the exploration of preparing self-releasing glaze ceramic materials using red mud as raw material was carried out. During the exploration, the self-releasing glaze ceramic materials with low radiation level were produced by normal pressure sintering process using the main ingredients of red mud, red sandstone, barium carbonate and ball clay. The properties of the self-releasing glaze ceramic samples were investigated by the measurements of mechanical properties, X-ray diffraction (XRD), scanning electron microscopy (SEM) and radiation measurement. The results show that the self-releasing glaze ceramic materials have good mechanical properties (the bulk density, 3.10 g/cm3; the compressive strength, 78.00 MPa). Adding barium carbonate to the raw materials and then calcine them to ceramics, which can extend the sintering temperature range and the radioactivity level of the self-releasing glaze ceramic materials can be reduced to that of the natural radioactive background of Guilin Area, Karst landform (the average 60 Total/Timer).


2011 ◽  
Vol 194-196 ◽  
pp. 1464-1469
Author(s):  
Bin Li ◽  
Yi Feng ◽  
Hui Qiang Liu ◽  
Yan Fang Zhu ◽  
Dong Bo Yu ◽  
...  

Different grain size of starting powder was choosed and different sintering additives were used to fabricate Si3N4 ceramics by pressureless sintering. Samples’ relative density and mechanical properties including Vickers hardness, bending strength and fracture toughness were tested. Then XRD, SEM and EDS were carried out to identify phase and observe microstructure and fracture morphology. The result shows that high purity α phase Si3N4 powder of 5 μm is suitable for sintering and combination of 5 wt.% MgO +5 wt.% Y2O3 is most effective within six kinds of sintering aids.


2013 ◽  
Vol 815 ◽  
pp. 233-239
Author(s):  
Xue Quan Liu ◽  
Cun Guang Ding ◽  
Chang Hai Li ◽  
Yi Li ◽  
Li Xin Li ◽  
...  

A fibrous monolith cemented carbide with WC-6Co as cell and WC-20Co as cell boundaries was produced through hot co-extrusion process in this paper. The density, hardness, bending strength and fracture toughness of the fibrous monolith cemented carbide were tested, and the fracture and crack propagation were observed by metalloscope and SEM. The results showed that the bending strength and fracture toughness of the fibrous monolith cemented carbides was remarkably improved 71.91% and 45.7% respectively, while the hardness was slightly decreased 1% compared with WC-6Co composites. It is the reason that the tougher shell WC-20Co with higher bending strength and fracture toughness can absorb more fracture energy, which can slow down and prevent the crack propagating from brittle core WC-6Co.


Sign in / Sign up

Export Citation Format

Share Document