scholarly journals Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy)

2018 ◽  
Vol 22 (1) ◽  
pp. 391-416 ◽  
Author(s):  
Maurizio Mazzoleni ◽  
Vivian Juliette Cortes Arevalo ◽  
Uta Wehn ◽  
Leonardo Alfonso ◽  
Daniele Norbiato ◽  
...  

Abstract. To improve hydrological predictions, real-time measurements derived from traditional physical sensors are integrated within mathematic models. Recently, traditional sensors are being complemented with crowdsourced data (social sensors). Although measurements from social sensors can be low cost and more spatially distributed, other factors like spatial variability of citizen involvement, decreasing involvement over time, variable observations accuracy and feasibility for model assimilation play an important role in accurate flood predictions. Only a few studies have investigated the benefit of assimilating uncertain crowdsourced data in hydrological and hydraulic models. In this study, we investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of static physical, static social and dynamic social sensors. We assess improvements in the model prediction performance for different spatial–temporal scenarios of citizen involvement levels. To that end, we simulate an extreme flood event that occurred in the Bacchiglione catchment  (Italy) in May 2013 using a semi-distributed hydrological model with the station at Ponte degli Angeli (Vicenza) as the prediction–validation point. A conceptual hydrological model is implemented by the Alto Adriatico Water Authority and it is used to estimate runoff from the different sub-catchments, while a hydraulic model is implemented to propagate the flow along the river reach. In both models, a Kalman filter is implemented to assimilate the crowdsourced observations. Synthetic crowdsourced observations are generated for either static social or dynamic social sensors because these measures were not available at the time of the study. We consider two sets of experiments: (i) assuming random probability of receiving crowdsourced observations and (ii) using theoretical scenarios of citizen motivations, and consequent involvement levels, based on population distribution. The results demonstrate the usefulness of integrating crowdsourced observations. First, the assimilation of crowdsourced observations located at upstream points of the Bacchiglione catchment ensure high model performance for high lead-time values, whereas observations at the outlet of the catchments provide good results for short lead times. Second, biased and inaccurate crowdsourced observations can significantly affect model results. Third, the theoretical scenario of citizens motivated by their feeling of belonging to a community of friends has the best effect in the model performance. However, flood prediction only improved when such small communities are located in the upstream portion of the Bacchiglione catchment. Finally, decreasing involvement over time leads to a reduction in model performance and consequently inaccurate flood forecasts.

2017 ◽  
Author(s):  
Maurizio Mazzoleni ◽  
Vivian Juliette Cortes Arevalo ◽  
Uta Wehn ◽  
Leonardo Alfonso ◽  
Daniele Norbiato ◽  
...  

Abstract. Accurate flood predictions are essential to reduce the risk and damages over large urbanized areas. To improve prediction capabilities, hydrological measurements derived by traditional physical sensors are integrated in real-time within mathematic models. Recently, traditional sensors are complemented with low-cost social sensors. However, measurements derived by social sensors (i.e. crowdsourced observations) can be more spatially distributed but less accurate. In this study, we assess the usefulness for model performance of assimilating crowdsourced observations from a heterogeneous network of static physical, static social and dynamic social sensors. We assess potential effects on the model predictions to the extreme flood event occurred in the Bacchiglione catchment on May 2013. Flood predictions are estimated at the target point of Ponte degli Angeli (Vicenza), outlet of the Bacchiglione catchment, by means of a semi-distributed hydrological model. The contribution of the upstream sub-catchment is calculated using a conceptual hydrological model. The flow is propagated along the river reach using a hydraulic model. In both models, a Kalman filter is implemented to assimilate the real-time crowdsourced observations. We synthetically derived crowdsourced observations for either static social or dynamic social sensors because crowdsourced measures were not available. We consider three sets of experiments: (1) only physical sensors are available; (2) probability of receiving crowdsourced observations and (3) realistic scenario of citizen engagement based on population distribution. The results demonstrated the importance of integrating crowdsourced observations. Observations from upstream sub-catchments assimilated into the hydrological model ensures high model performance for high lead time values. Observations next to the outlet of the catchments provide good results for short lead times. Furthermore, citizen engagement level scenarios moved by a feeling of belonging to a community of friends indicated flood prediction improvements when such small communities are located upstream a particular target point. Effective communication and feedback is required between water authorities and citizens to ensure minimum engagement levels and to minimize the intrinsic low-variable accuracy of crowdsourced observations.


2006 ◽  
Vol 10 (3) ◽  
pp. 395-412 ◽  
Author(s):  
H. Kunstmann ◽  
J. Krause ◽  
S. Mayr

Abstract. Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m). Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis) narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. Application of a 2-dimensional numerical groundwater model partly yielded a slight decrease of overall model performance when compared to a simple conceptual groundwater approach. Increased model complexity therefore did not yield in general increased model performance. A detailed covariance analysis was performed allowing to derive confidence bounds for all estimated parameters. The correlation between the estimated parameters was in most cases negligible, showing that parameters were estimated independently from each other.


Author(s):  
X. Cui ◽  
W. Sun ◽  
J. Teng ◽  
H. Song ◽  
X. Yao

Abstract. Calibration of hydrological models in ungauged basins is now a hot research topic in the field of hydrology. In addition to the traditional method of parameter regionalization, using discontinuous flow observations to calibrate hydrological models has gradually become popular in recent years. In this study, the possibility of using a limited number of river discharge data to calibrate a distributed hydrological model, the Soil and Water Assessment Tool (SWAT), was explored. The influence of the quantity of discharge measurements on model calibration in the upper Heihe Basin was analysed. Calibration using only one year of daily discharge measurements was compared with calibration using three years of discharge data. The results showed that the parameter values derived from calibration using one year’s data could achieve similar model performance with calibration using three years’ data, indicating that there is a possibility of using limited numbers of discharge data to calibrate the SWAT model effectively in poorly gauged basins.


2019 ◽  
Vol 80 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Saadia Bouragba ◽  
Katsuaki Komai ◽  
Keisuke Nakayama

Abstract This paper aims to assess the performance of a distributed hydrological model for simulating the transport of various heavy metals in rivers, to enhance and support environmental monitoring strategies for rivers in developing countries. In this context, we evaluated the performance of the Geophysical flow Circulation (GeoCIRC) model based on Object-Oriented Design (OOD) for the simulation of contamination from multiple heavy metals (Pb, Hg, Cr, and Zn) in Harrach River in Algeria. The results of the case study were in good agreement with the observations. Methodology for the assessment of data quality control and the improvement of monitoring procedures was proposed by using the hydrological model to simulate different scenarios. The GeoCIRC-model-based OOD allowed the prediction of the concentrations of heavy metals with minimal input data. Also, various heavy metals could be numerically treated simultaneously because the OOD increases the model's flexibility to allow the handling of many transportable materials. Therefore, the GeoCIRC model is a powerful tool for the monitoring of environmental contamination in rivers by various heavy metals.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3242
Author(s):  
András Bárdossy ◽  
Faizan Anwar ◽  
Jochen Seidel

We dealt with a rather frequent and difficult situation while modelling extreme floods, namely, model output uncertainty in data sparse regions. A historical extreme flood event was chosen to illustrate the challenges involved. Our aim was to understand what the causes might have been and specifically to show how input and model parameter uncertainties affect the output. For this purpose, a conceptual model was calibrated and validated with recent data rich time period. Resulting model parameters were used to model the historical event which subsequently resulted in a rather poor hydrograph. Due to the bad model performance, a spatial simulation technique was used to invert the model for precipitation. Constraints, such as taking the precipitation values at historical observation locations in to account, with correct spatial structures and following the observed regional distributions were used to generate realistic precipitation fields. Results showed that the inverted precipitation improved the performance significantly even when using many different model parameters. We conclude that while modelling in data sparse conditions both model input and parameter uncertainties have to be dealt with simultaneously to obtain meaningful results.


2005 ◽  
Vol 5 ◽  
pp. 83-87 ◽  
Author(s):  
G. Hartmann ◽  
A. Bárdossy

Abstract. In order to find a model parameterization such that the hydrological model performs well even under different conditions, appropriate model performance measures have to be determined. A common performance measure is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this paper a modified version is suggested in order to calibrate a model on different time scales simultaneously (days up to years). A spatially distributed hydrological model based on HBV concept was used. The modelling was applied on the Upper Neckar catchment, a mesoscale river in south western Germany with a basin size of about 4000 km2. The observation period 1961-1990 was divided into four different climatic periods, referred to as "warm", "cold", "wet" and "dry". These sub periods were used to assess the transferability of the model calibration and of the measure of performance. In a first step, the hydrological model was calibrated on a certain period and afterwards applied on the same period. Then, a validation was performed on the climatologically opposite period than the calibration, e.g. the model calibrated on the cold period was applied on the warm period. Optimal parameter sets were identified by an automatic calibration procedure based on Simulated Annealing. The results show, that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task. Especially the objective function has to be chosen very carefully.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Yongwei Liu ◽  
Wen Wang ◽  
Yiming Hu ◽  
Wei Cui

This study investigates the capability of improving the distributed hydrological model performance by assimilating the streamflow observations. Incorrectly estimated model states will lead to discrepancies between the observed and estimated streamflow. Consequently, streamflow observations can be used to update the model states, and the improved model states will eventually benefit the streamflow predictions. This study tests this concept in upper Huai River basin. We assimilate the streamflow observations sequentially into the Soil and Water Assessment Tool (SWAT) using the ensemble Kalman filter (EnKF) to update the model states. Both synthetic experiments and real data application are used to demonstrate the benefit of this data assimilation scheme. The experiment shows that assimilating the streamflow observations at interior sites significantly improves the streamflow predictions for the whole basin. Assimilating the catchment outlet streamflow improves the streamflow predictions near the catchment outlet. In real data case, the estimated streamflow at the catchment outlet is significantly improved by assimilating the in situ streamflow measurements at interior gauges. Assimilating the in situ catchment outlet streamflow also improves the streamflow prediction of one interior location on the main reach. This may demonstrate that updating model states using streamflow observations can constrain the flux estimates in distributed hydrological modeling.


2021 ◽  
Author(s):  
Manuela I. Brunner ◽  
Louise Slater

Abstract. Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System (EFAS) to increase the sample size available to estimate the frequency of extreme local and regional flood events. We assess the added value of such pooling, determine where in Central Europe one might expect the most extreme events, and evaluate how event extremeness is related to physiographic and meteorological catchment characteristics. We work with a set of 234 catchments from the Global Runoff Data Center for which performance of simulated floods is satisfactory when compared to observed streamflow. We pool EFAS-simulated flood events for 10 perturbed ensemble members and lead times from 22 to 46 days, where flood events are only weakly dependent (< 0.25 average correlation across lead times). The resulting large ensemble (130 time series instead of one) enables analyses of very extreme events, which occur less than twice a century. We demonstrate that such ensemble pooling produces more robust estimates with considerably reduced uncertainty bounds (by ~80 % on average) than observation-based estimates but may equally introduce biases arising from the simulated meteorology and hydrological model. Our results show that specific flood return levels are highest in steep and wet regions and are comparably low in regions with strong flow regulation through dams. Furthermore, our pooled flood estimates indicate that the probability of regional flooding is higher in Central Europe and Great Britain than in Scandinavia. We conclude that reforecast ensemble pooling is an efficient approach to increase sample size and to derive robust local and regional flood estimates in regions with sufficient hydrological model performance.


2020 ◽  
Vol 2 (1) ◽  
pp. 99-107
Author(s):  
Bibek Thapa ◽  
Anusha Danegulu ◽  
Naresh Suwal ◽  
Surabhi Upadhyay ◽  
Bikesh Manandhar ◽  
...  

A hydrological model helps in understanding, predicting, and managing water resources. The HEC-HMS (Centre for Hydrological Engineering - Hydrological Modelling Systems, US Army Corps of Engineers) is one of the hydrological models used to simulate rainfall-runoff and routing processes in diverse geographical areas. In this study, a semi-distributed hydrological model was developed using HEC-HMS for the West-Rapti river basin. The model was calibrated and validated at each outlet of sub-basins and used to simulate the outflow of each sub-basins of the West Rapti river basin. A total of eight rain gauge stations, five meteorological stations, and three hydrological stations, within the basin, were used. The simulated results closely matched the observed flows at the three gauging stations. The Nash-Sutcliffe Efficiency indicated the good model performance of the simulated streamflow with the observed flow at two stations and satisfactory model fit at one station. The performance based on percentage bias and root mean square error was good. This model provides a reference to study water balance, water resource management, and flooding control of the West Rapti basin and can be replicated in other basins.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 34 ◽  
Author(s):  
Aida Jabbari ◽  
Jae-Min So ◽  
Deg-Hyo Bae

A numerical weather prediction and a rainfall-runoff model employed to evaluate precipitation and flood forecast for the Imjin River (South and North Korea). The real-time precipitation at point and catchment scales evaluated to select proper hydrological model to couple with atmospheric model. As a major limitation of previous studies, temporal and spatial resolutions of hydrological model are smaller than those of meteorological model. Here, through high resolution of temporal (10 min) and spatial (1 km × 1 km), the optimal resolution determined. The results showed Weather Research and Forecasting (WRF) model underestimated precipitation in point and catchment assessment and its skill was relatively higher for catchment than point scale, as illustrated by the lower Root Mean Square Error (RMSE) of 59.67, 160.48, 68.49 for the catchment and 84.49, 212.80 and 91.53 for the point scale in the events 2002, 2007 and 2011, respectively. The findings led to choose the semi-distributed hydrological model. The variations in temporal and spatial resolutions illustrated accuracy decrease; additionally, the optimal spatial resolution obtained at 8 km and temporal resolution did not affect the inherent inaccuracy of the results. Lead-time variation demonstrated that lead-time dependency was almost negligible below 36 h. With reference to this study, comparisons of model performance provided quantitative knowledge for understanding credibility and restrictions of meteo-hydrological models.


Sign in / Sign up

Export Citation Format

Share Document