scholarly journals ASSESSMENT OF GLOBAL WIND ENERGY RESOURCE UTILIZATION POTENTIAL

Author(s):  
M. Ma ◽  
B. He ◽  
Y. Guan ◽  
H. Zhang ◽  
S. Song

Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

2018 ◽  
Vol 10 (11) ◽  
pp. 3913 ◽  
Author(s):  
Tonglin Fu ◽  
Chen Wang

Wind power has the most potential for clean and renewable energy development. Wind power not only effectively solves the problem of energy shortages, but also reduces air pollution. In recent years, wind speed time series analyses have increasingly become a concern of administrators and power grid dispatchers searching for a reasonable way to reduce the operating cost of wind farms. However, analyzing wind speed in detail has become a difficult task, because the traditional models sometimes fail to capture data features due to the randomness and intermittency of wind speed. In order to analyze wind speed series in detail, in this paper, an effective and practical analysis system is studied and developed, which includes a data analysis module, a data preprocessing module, a parameter optimization module, and a wind speed forecasting module. Numerical results show that the wind time series analysis system can not only assess wind energy resources of a wind farm, but also master future changes of wind speed, and can be an effective tool for wind farm management and decision-making.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2426
Author(s):  
Mengran Li ◽  
Ye Xu ◽  
Junhong Guo ◽  
Ye Li ◽  
Wei Li

The development and utilization of wind energy has alleviated the problems of energy shortage and environmental pollution; however, it caused many negative impacts due to suboptimal site selections. This study proposes an innovative method integrating Geographic Information System (GIS), fuzzy Analytic Hierarchy Process (FAHP), and fuzzy VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) for site selection of wind farms in the Wafangdian region, China. The uncertainties caused by subjective judgments of the stakeholders were tackled by the FAHP method firstly, where weight values of six criteria were identified. Next, the fuzzy VIKOR method and GIS tool were used to generate the Qi value of each location for ranking their appropriate degrees for wind energy development. The results demonstrated that the middle and upper parts of the studied area are suitable for the exploitation of wind energy, while the central and eastern areas are unfavorable. The influences exerted by various weight combinations and climate change on a site suitability assessment were examined. The resulting comparison with existing wind farms reflected the practicability and reliability of the proposed method; the estimation of climate change impacts on site selection provided the suggestion and support of a long-term plan for wind power development, and even the energy structure adjustment scheme adapted to climate change.


2012 ◽  
Vol 214 ◽  
pp. 445-450 ◽  
Author(s):  
Lin Wang ◽  
Jing Hai Zhu ◽  
Zhong Qiang Ma

Liaoning Beipiao is located in "Three north" wind zone which is one of the regions rich in wind energy resources in China. The area is windy throughout the year suitable for wind energy development and utilization. For the next 12 years, Beipiao government plans to construct 16 key wind energy resource development areas. However, the planning wind farms are located in Liaoxi Corridor for birds migrating must pass by. The wind farm may generate adverse effects to migratory bird ecology in Beipiao. The basic characteristic of bird ecological system in Beipiao area is introduced in the paper. The adverse effects of wind farm on birds and answer measures are discussed as well.


2019 ◽  
Vol 21 (2) ◽  
pp. 745-754
Author(s):  
Otávio Augusto de Oliveira Lima Barra ◽  
Fábio Perdigão Vasconcelos ◽  
Danilo Vieira dos Santos ◽  
Adely Pereira Silveira

O Brasil é um país com uma extensa linha de costa, são cerca de 7.367 km de extensão do seu litoral, com um potencial natural para a geração de energia eólica. O estado do Ceará é um dos maiores produtores de energia eólica para o país, obtendo notoriedade e a necessidade de manutenção dos seus parques eólicos, especialmente se instalados em zonas de costa, onde há uma grande dinâmica natural. O presente trabalho, busca o acompanhamento das dinâmicas morfológicas na praia de Volta do Rio, localizada em Acaraú/CE, que fica a cerca de 238 km de Fortaleza/CE. Os dados coletados em idas à campo, constataram que há um forte processo erosivo atuante na praia de Volta do Rio, o que alerta para a contenção do avanço marinho sob o parque eólico presente no local. A erosão é um fenômeno natural que trabalha na modelação de demasiadas formas terrestres. No litoral, isso não é diferente, por ser um ambiente altamente dinâmico onde há a interação entre continente, atmosfera e oceano, sendo possível encontrar diversos atuantes que podem intensificar os processos erosivos, sejam eles o vento, maré, ou por intervenções humanas, como construções e ocupações indevidas ao longo da linha de costa.Palavras Chave: Volta do Rio; Energia Eólica; Erosão. ABSTRACTBrazil is a country with an extensive coastline, about 7,367 km of coastline, with a natural potential for wind power generation. The state of Ceará is one of the largest producers of wind energy for the country, obtaining notoriety and required maintenance of its wind farms, especially if located in coastal areas, where there is a great natural dynamic. The present work seeks the movement of morphological dynamics in the beach of Volta do Rio, located in Acaraú/CE, which is about 238 km from Fortaleza/CE. The data collected in the field found that there is a strong erosive process on the Beach of Volta do Rio, which warns about the expansion of advanced marine on the wind farm present on site. Erosion is a natural phenomenon that works in the modeling of many hearth forms. On the coast, this is not different, considering a highly dynamic environment in which there is an interaction between continent, atmosphere and ocean, being possible to find many factors that can intensify the erosive processes, such as wind, tide, or human intervention, as constructions and improper occupations along the coast line.Key words: Volta do Rio; Wind Energy; Erosion. RESUMENBrasil es un país con una extensa costa, cerca de 7.367 km de costa, con un potencial natural para la generación de energía eólica. El estado del Ceará es uno de los mayores productores de energía eólica del país, ganando notoriedad y la necesidad de mantener sus parques eólicos, especialmente si está instalado en zonas costeras, donde existe una gran dinámica natural. La presente investigación tiene como objetivo monitorear la dinámica morfológica en la playa de Vuelta del Rio, ubicada en Acaraú / CE, que está a unos 238 km de Fortaleza / CE. Los datos recopilados en los viajes de campo, encontraron que hay un fuerte proceso erosivo en la playa de Vuelta del Rio, que advierte sobre la contención del avance marino bajo el parque eólico presente en el sitio. La erosión es un fenómeno natural que funciona en el modelado de muchas formas terrestres. En la costa, esto no es diferente, ya que es un entorno altamente dinámico donde existe la interacción entre el continente, la atmósfera y el océano, permitiendo encontrar varios actores que pueden intensificar los procesos erosivos, ya sea viento, marea o intervenciones humanas, como edificios y ocupaciones inadecuadas a lo largo de la costa.Palabras clave: Vuelta del Río; Energía Eólica; Erosión.


2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 693
Author(s):  
Anna Dóra Sæþórsdóttir ◽  
Margrét Wendt ◽  
Edita Tverijonaite

The interest in harnessing wind energy keeps increasing globally. Iceland is considering building its first wind farms, but its landscape and nature are not only a resource for renewable energy production; they are also the main attraction for tourists. As wind turbines affect how the landscape is perceived and experienced, it is foreseeable that the construction of wind farms in Iceland will create land use conflicts between the energy sector and the tourism industry. This study sheds light on the impacts of wind farms on nature-based tourism as perceived by the tourism industry. Based on 47 semi-structured interviews with tourism service providers, it revealed that the impacts were perceived as mostly negative, since wind farms decrease the quality of the natural landscape. Furthermore, the study identified that the tourism industry considered the following as key factors for selecting suitable wind farm sites: the visibility of wind turbines, the number of tourists and tourist attractions in the area, the area’s degree of naturalness and the local need for energy. The research highlights the importance of analysing the various stakeholders’ opinions with the aim of mitigating land use conflicts and socioeconomic issues related to wind energy development.


2018 ◽  
Author(s):  
Sara C. Pryor ◽  
Tristan J. Shepherd ◽  
Rebecca J. Barthelmie

Abstract. Inter-annual variability (IAV) of expected annual energy production (AEP) from proposed wind farms plays a key role in dictating project financing. IAV in pre-construction projected AEP and the difference in 50th and 90th percentile (P50 and P90) AEP derives in part from variability in wind climates. However, the magnitude of IAV in wind speeds at/close to wind turbine hub-heights is poorly constrained and maybe overestimated by the 6 % standard deviation of annual mean wind speeds that is widely applied within the wind energy industry. Thus there is a need for improved understanding of the long-term wind resource and the inter-annual variability therein in order to generate more robust predictions of the financial value of a wind energy project. Long-term simulations of wind speeds near typical wind turbine hub-heights over the eastern USA indicate median gross capacity factors (computed using 10-minute wind speeds close to wind turbine hub-heights and the power curve of the most common wind turbine deployed in the region) that are in good agreement with values derived from operational wind farms. The IAV of annual mean wind speeds at/near to typical wind turbine hub-heights in these simulations is lower than is implied by assuming a standard deviation of 6 %. Indeed, rather than in 9 in 10 years exhibiting AEP within 0.9 and 1.1 times the long-term mean AEP, results presented herein indicate that over 90 % of the area in the eastern USA that currently has operating wind turbines simulated AEP lies within 0.94 and 1.06 of the long-term average. Further, IAV of estimated AEP is not substantially larger than IAV in mean wind speeds. These results indicate it may be appropriate to reduce the IAV applied to pre-construction AEP estimates to account for variability in wind climates, which would decrease the cost of capital for wind farm developments.


2020 ◽  
Vol 31 (4) ◽  
pp. 26-42
Author(s):  
Gordon Rae ◽  
Gareth Erfort

In the context of the Anthropocene, the decoupling of carbon emissions from electricity generation is critical. South Africa has an ageing coal power fleet, which will gradually be decommissioned over the next 30 years. This creates substantial opportunity for a just transition towards a future energy mix with a high renewable energy penetration. Offshore wind technology is a clean electricity generation alternative that presents great power security and decarbonisation opportunity for South Africa. This study estimated the offshore wind energy resource available within South Africa’s exclusive economic zone (EEZ), using a geographic information system methodology. The available resource was estimated under four developmental scenarios. This study revealed that South Africa has an annual offshore wind energy production potential of 44.52 TWh at ocean depths of less than 50 m (Scenario 1) and 2 387.08 TWh at depths less than 1 000 m (Scenario 2). Furthermore, a GIS-based multi-criteria evaluation was conducted to determine the most suitable locations for offshore wind farm development within the South African EEZ. The following suitable offshore wind development regions were identified: Richards Bay, KwaDukuza, Durban, and Struis Bay. Based on South Africa’s annual electricity consumption of 297.8 TWh in 2018, OWE could theoretically supply approximately 15% and 800% of South Africa’s annual electricity demand with offshore wind development Scenario 1 and 2 respectively.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2021 ◽  
Vol 55 (4) ◽  
pp. 72-87
Author(s):  
Travis Miles ◽  
Sarah Murphy ◽  
Josh Kohut ◽  
Sarah Borsetti ◽  
Daphne Munroe

Abstract The U.S. East Coast has 1.7 million acres of federal bottom under lease for the development of wind energy installations, with plans for more than 1,500 foundations to be placed. The scale of these wind farms has the potential to alter the unique and delicate oceanographic conditions along the expansive Atlantic continental shelf, a region characterized by a strong seasonal thermocline that overlies cold bottom water, known as the “Cold Pool.” Strong seasonal stratification traps cold (typically less than 10°C) water above the ocean bottom sustaining a boreal fauna that represents vast fisheries, including the most lucrative shellfish fisheries in the United States. This paper reviews the existing literature and research pertaining to the ways in which offshore wind farms may alter processes that establish, maintain, and degrade stratification associated with the Cold Pool through vertical mixing in this seasonally dynamic system. Changes in stratification could have important consequences in Cold Pool setup and degradation, processes fundamental to high fishery productivity of the region. The potential for these multiple wind energy arrays to alter oceanographic processes and the biological systems that rely on them is possible; however, a great deal of uncertainty remains about the nature and scale of these interactions. Research should be prioritized that identifies stratification thresholds of influence, below which turbines and wind farm arrays may alter oceanographic processes. These should be examined within context of spatial and seasonal dynamics of the Cold Pool and offshore wind lease areas to identify potential areas of further study.


Sign in / Sign up

Export Citation Format

Share Document