Effects of Beipiao Wind Power Development Planning on Local Birds Ecosystem

2012 ◽  
Vol 214 ◽  
pp. 445-450 ◽  
Author(s):  
Lin Wang ◽  
Jing Hai Zhu ◽  
Zhong Qiang Ma

Liaoning Beipiao is located in "Three north" wind zone which is one of the regions rich in wind energy resources in China. The area is windy throughout the year suitable for wind energy development and utilization. For the next 12 years, Beipiao government plans to construct 16 key wind energy resource development areas. However, the planning wind farms are located in Liaoxi Corridor for birds migrating must pass by. The wind farm may generate adverse effects to migratory bird ecology in Beipiao. The basic characteristic of bird ecological system in Beipiao area is introduced in the paper. The adverse effects of wind farm on birds and answer measures are discussed as well.

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 693
Author(s):  
Anna Dóra Sæþórsdóttir ◽  
Margrét Wendt ◽  
Edita Tverijonaite

The interest in harnessing wind energy keeps increasing globally. Iceland is considering building its first wind farms, but its landscape and nature are not only a resource for renewable energy production; they are also the main attraction for tourists. As wind turbines affect how the landscape is perceived and experienced, it is foreseeable that the construction of wind farms in Iceland will create land use conflicts between the energy sector and the tourism industry. This study sheds light on the impacts of wind farms on nature-based tourism as perceived by the tourism industry. Based on 47 semi-structured interviews with tourism service providers, it revealed that the impacts were perceived as mostly negative, since wind farms decrease the quality of the natural landscape. Furthermore, the study identified that the tourism industry considered the following as key factors for selecting suitable wind farm sites: the visibility of wind turbines, the number of tourists and tourist attractions in the area, the area’s degree of naturalness and the local need for energy. The research highlights the importance of analysing the various stakeholders’ opinions with the aim of mitigating land use conflicts and socioeconomic issues related to wind energy development.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sanjeev H. Kulkarni ◽  
Tumkur Ramakrishnarao Anil ◽  
Rajakumar Dyamenally Gowdar

With maturity of advanced technologies and urgent requirement for maintaining a healthy environment with reasonable price, India is moving towards a trend of generating electricity from renewable resources. Wind energy production, with its relatively safer and positive environmental characteristics, has evolved from a marginal activity into a multibillion dollar industry today. Wind energy power plants, also known as wind farms, comprise multiple wind turbines. Though there are several wind-mill clusters producing energy in different geographical locations across the world, evaluating their performance is a complex task and is an important focus for stakeholders. In this work an attempt is made to estimate the performance of wind clusters employing a multicriteria approach. Multiple factors that affect wind farm operations are analyzed by taking experts opinions, and a performance ranking of the wind farms is generated. The weights of the selection criteria are determined by pairwise comparison matrices of the Analytic Hierarchy Process (AHP). The proposed methodology evaluates wind farm performance based on technical, economic, environmental, and sociological indicators. Both qualitative and quantitative parameters were considered. Empirical data were collected through questionnaire from the selected wind farms of Belagavi district in the Indian State of Karnataka. This proposed methodology is a useful tool for cluster analysis.


Author(s):  
M. Ma ◽  
B. He ◽  
Y. Guan ◽  
H. Zhang ◽  
S. Song

Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.


2020 ◽  
Author(s):  
Radian Belu

Wind energy usage is increasing at fast rates due to significant technical advances, energy supply security and environmental concerns. Research is focusing among others areas on the development of reliable and accurate wind energy assessment methods. Offshore wind energy resources are usually larger than at geographically nearby onshore sites, which may offset in part higher installation, operation, and maintenance costs. Successful offshore wind energy development relies on accurate analysis and assessment of wind energy resource potential. Offshore wind assessment challenges are related to the wind turbine size, offshore installation challenges, lack of adequate and long-term wind and meteorological measurements, etc. Wind, a highly intermittent phenomenon has large spatiotemporal variability, being subject to sub-hourly, hourly, diurnal, seasonal, yearly, and climate variations in addition to their dependence on the geography and environment. Wind regime characteristics are critical to all aspect of a wind energy project, e.g. potential site identification, economic viability, equipment design, operation, management, or wind farm impacts on the electric grid. For a reliable wind energy assessment, measurements at rotor heights are required at least for one year. If such measurements are not available needs to be substituted by alternative approaches, e.g. measure-correlate-predict or numerical methods. Chapter objectives are to provide the reader with comprehensive reviews of the wind energy assessment and analysis methods.


2018 ◽  
Vol 10 (11) ◽  
pp. 3913 ◽  
Author(s):  
Tonglin Fu ◽  
Chen Wang

Wind power has the most potential for clean and renewable energy development. Wind power not only effectively solves the problem of energy shortages, but also reduces air pollution. In recent years, wind speed time series analyses have increasingly become a concern of administrators and power grid dispatchers searching for a reasonable way to reduce the operating cost of wind farms. However, analyzing wind speed in detail has become a difficult task, because the traditional models sometimes fail to capture data features due to the randomness and intermittency of wind speed. In order to analyze wind speed series in detail, in this paper, an effective and practical analysis system is studied and developed, which includes a data analysis module, a data preprocessing module, a parameter optimization module, and a wind speed forecasting module. Numerical results show that the wind time series analysis system can not only assess wind energy resources of a wind farm, but also master future changes of wind speed, and can be an effective tool for wind farm management and decision-making.


Author(s):  
David G. Loomis ◽  
Jared Hayden ◽  
Sarah Noll ◽  
James E. Payne

AbstractA number of factors have contributed to the rapid growth of wind power capacity in Illinois from 50 MW in 2003 to 3,334.91 MW in 2012, including: federal and state policies, energy security, energy costs, environmental benefits, economic development opportunities, and state-specific factors. One key policy driver in Illinois was the passage of the Illinois Power Agency Act in 2007, which included a renewable portfolio standard of 25 % by 2025, 75 % of the renewable energy resources employed to meet the renewable portfolio standard were designated to wind energy. This study analyzes the economic impacts from the 23 wind projects in Illinois that exceed 50 MW of capacity. These wind projects account for 3,334.91 MW or 99 % of the state’s wind energy generating capacity. Using the JEDI input-output model, the 23 largest wind farms in Illinois created approximately 19,047 full-time equivalent jobs during construction periods with a total payroll of over $1.1 billion. In addition, approximately 814 permanent jobs in rural Illinois areas with a total annual payroll of nearly $48 million are supported. Furthermore, wind farms generated roughly $28.5 million in annual property taxes for local economies as well as $13 million annually in extra income for Illinois landowners who lease their land to wind farm developers. The lifetime total economic benefit of the 23 wind farm projects is estimated at $5.98 billion.


2011 ◽  
Vol 347-353 ◽  
pp. 3529-3532 ◽  
Author(s):  
Hai Bo Jiang ◽  
Yun Peng Zhao ◽  
Yan Ru Li

To develop and take advantage of wind energy resources in the South China Sea's coral reefs, the paper discussed the situation of local wind resources, typhoon, corrosion, geology, wind turbine transportation and installation problems. The analysis indicates that the South China Sea typhoon-prone, serious corrosion, bad geology will cause many difficulties to installation and use of wind turbines. Authors believe that, installing and using small wind turbine in the coral reefs is feasible, but the suitable measure of anti-typhoon, anti-corrosion, transportation, installation and maintenance must be accepted, which needs a great deal of budget support.


2020 ◽  
Vol 15 (6) ◽  
pp. 111-124
Author(s):  
FARAH ELLYZA HASHIM ◽  
◽  
OSCAR PEYRE ◽  
SARAH JOHNSON LAPOK ◽  
OMAR YAAKOB ◽  
...  

Realistic view on the potential of offshore wind farm development in Malaysia is necessary and requires accurate and wide coverage of wind speed data. Long term global datasets of satellite altimetry of wind speed provide a potentially valuable resource to identify the potential of offshore wind energy in Malaysia. This paper presents three different assessments of offshore wind energy resources in Malaysia using satellite altimetry. The wind speed data obtained from Radar Altimeter Database System (RADS) were validated and identified to be in agreement with previous studies. The resources were then assessed at three different levels; theoretical, technical and practical offshore wind energy potential. The technical resource potential was assessed by taking into consideration the available offshore wind turbine technology. Conflicting uses and environmental constraints that define the practical offshore wind energy resources are plotted on the maps to present a practicality of offshore wind farm development in Malaysian sea. The study concluded that, in theoretical view, Malaysia does have potential of offshore wind energy resource especially in Borneo Water with average annual wind energy density above 500 kWh/m2. However, the development of offshore wind farm in Malaysia will be difficult taking into consideration the technical and practical challenge.


2019 ◽  
Vol 21 (2) ◽  
pp. 745-754
Author(s):  
Otávio Augusto de Oliveira Lima Barra ◽  
Fábio Perdigão Vasconcelos ◽  
Danilo Vieira dos Santos ◽  
Adely Pereira Silveira

O Brasil é um país com uma extensa linha de costa, são cerca de 7.367 km de extensão do seu litoral, com um potencial natural para a geração de energia eólica. O estado do Ceará é um dos maiores produtores de energia eólica para o país, obtendo notoriedade e a necessidade de manutenção dos seus parques eólicos, especialmente se instalados em zonas de costa, onde há uma grande dinâmica natural. O presente trabalho, busca o acompanhamento das dinâmicas morfológicas na praia de Volta do Rio, localizada em Acaraú/CE, que fica a cerca de 238 km de Fortaleza/CE. Os dados coletados em idas à campo, constataram que há um forte processo erosivo atuante na praia de Volta do Rio, o que alerta para a contenção do avanço marinho sob o parque eólico presente no local. A erosão é um fenômeno natural que trabalha na modelação de demasiadas formas terrestres. No litoral, isso não é diferente, por ser um ambiente altamente dinâmico onde há a interação entre continente, atmosfera e oceano, sendo possível encontrar diversos atuantes que podem intensificar os processos erosivos, sejam eles o vento, maré, ou por intervenções humanas, como construções e ocupações indevidas ao longo da linha de costa.Palavras Chave: Volta do Rio; Energia Eólica; Erosão. ABSTRACTBrazil is a country with an extensive coastline, about 7,367 km of coastline, with a natural potential for wind power generation. The state of Ceará is one of the largest producers of wind energy for the country, obtaining notoriety and required maintenance of its wind farms, especially if located in coastal areas, where there is a great natural dynamic. The present work seeks the movement of morphological dynamics in the beach of Volta do Rio, located in Acaraú/CE, which is about 238 km from Fortaleza/CE. The data collected in the field found that there is a strong erosive process on the Beach of Volta do Rio, which warns about the expansion of advanced marine on the wind farm present on site. Erosion is a natural phenomenon that works in the modeling of many hearth forms. On the coast, this is not different, considering a highly dynamic environment in which there is an interaction between continent, atmosphere and ocean, being possible to find many factors that can intensify the erosive processes, such as wind, tide, or human intervention, as constructions and improper occupations along the coast line.Key words: Volta do Rio; Wind Energy; Erosion. RESUMENBrasil es un país con una extensa costa, cerca de 7.367 km de costa, con un potencial natural para la generación de energía eólica. El estado del Ceará es uno de los mayores productores de energía eólica del país, ganando notoriedad y la necesidad de mantener sus parques eólicos, especialmente si está instalado en zonas costeras, donde existe una gran dinámica natural. La presente investigación tiene como objetivo monitorear la dinámica morfológica en la playa de Vuelta del Rio, ubicada en Acaraú / CE, que está a unos 238 km de Fortaleza / CE. Los datos recopilados en los viajes de campo, encontraron que hay un fuerte proceso erosivo en la playa de Vuelta del Rio, que advierte sobre la contención del avance marino bajo el parque eólico presente en el sitio. La erosión es un fenómeno natural que funciona en el modelado de muchas formas terrestres. En la costa, esto no es diferente, ya que es un entorno altamente dinámico donde existe la interacción entre el continente, la atmósfera y el océano, permitiendo encontrar varios actores que pueden intensificar los procesos erosivos, ya sea viento, marea o intervenciones humanas, como edificios y ocupaciones inadecuadas a lo largo de la costa.Palabras clave: Vuelta del Río; Energía Eólica; Erosión.


2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


Sign in / Sign up

Export Citation Format

Share Document