scholarly journals A STATISTICAL TEXTURE FEATURE FOR BUILDING COLLAPSE INFORMATION EXTRACTION OF SAR IMAGE

Author(s):  
L. Li ◽  
H. Yang ◽  
Q. Chen ◽  
X. Liu

Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G<sup>0</sup> distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

2020 ◽  
Vol 12 (20) ◽  
pp. 3307
Author(s):  
Bahaa Mohamadi ◽  
Timo Balz ◽  
Ali Younes

Buildings are vulnerable to collapse incidents. We adopt a workflow to detect unusual vertical surface motions before building collapses based on PS-InSAR time series analysis and spatiotemporal data mining techniques. Sentinel-1 ascending and descending data are integrated to decompose vertical deformation in the city of Alexandria, Egypt. Collapsed building data were collected from official sources, and overlayed on PS-InSAR vertical deformation results. Time series deformation residuals are used to create a space–time cube in the ArcGIS software environment and analyzed by emerging hot spot analysis to extract spatiotemporal patterns for vertical deformation around collapsed buildings. Our results show two spatiotemporal patterns of new cold spot or new hot spot before the incidents in 66 out of 68 collapsed buildings between May 2015 and December 2018. The method was validated in detail on four collapsed buildings between January and May 2019, proving the applicability of this workflow to create a temporal vulnerability map for building collapse monitoring. This study is a step forward to create a PS-InSAR based model for building collapse prediction in the city.


Author(s):  
L. Ding ◽  
H. Miao

Abstract. The collapse of buildings is a major factor in the casualties and economic losses of earthquake disasters, and the degree of building collapse is an important indicator for disaster assessment. In order to improve the classification of collapsed building coverings (CBC), a new fusion technique was proposed to integrate optical data and SAR data at the pixel level based on manifold learning.Three typical manifold learning models, namely, Isometric Mapping(ISOMAP), Local Linear Embedding (LLE) and principle component analysis (PCA), were used, and their results were compared. Feature extraction were employed from SPOT-5 data with RADARSAT-2 data. Experimental results showed that 1) the most useful features of the optical and SAR data were contained in manifolds with low-intrinsic dimensionality, while various CBC classes were distributed differently throughout the low- dimensionality spaces of manifolds derived from different manifold learning models; 2) in some cases, the performance of Isomap is similar to PCA, but PCA generally performed the best in this study, yielding the best accuracy of all CBC classes and requiring the least amount of time to extract features and establish learning; and 3) the LLE-derived manifolds yielded the lowest accuracy, mainly by confusing soil with collapsed building and rock. These results show that the manifold learning can improve the effectiveness of CBC classification by fusing the optical and SAR data features at the pixel level, which can be applied in practice to support the accurate analysis of earthquake damage.


2020 ◽  
Author(s):  
Wei Zhai ◽  
Xiu-lai Xiao ◽  
Hao-ran Zhang

&lt;p&gt;Rapid evaluation of building earthquake disaster information is of great significance for earthquake emergency rescue. Although polarimetric SAR has rich polarimetric information, there are still clear texture information in polarimetric SAR that could not be ignored, especially the intact artificial buildings show regular texture features in the image, and the texture distribution in the collapsed building area is disordered, so combining the texture information can also extract the building information well. In this paper, the full polarization SAR data of Yushu area in 2010 is taken as the research object, and the building area in SAR image is extracted by using the volume scattering component P&lt;sub&gt;V&lt;/sub&gt;&amp;#160;in Yamaguchi decomposition. On this basis, the intact building area and collapsed building area are extracted based on the variogram&amp;#160;value.&amp;#160;Comparing&amp;#160;and analyzing the result with&amp;#160;the intact building area is extracted by using the secondary scattering component P&lt;sub&gt;D&lt;/sub&gt;&amp;#160;in Yamaguchi decomposition.&amp;#160;Finally, verified the accuracy by combing the optical remote sensing image after the earthquake, the extraction accuracy of intact buildings is 80.18%, collapsed buildings is 84.54%, and road water system is 77.58%.&lt;/p&gt;&lt;p&gt;Firstly, buildings and non-buildings are distinguished in SAR image. 100 sample matrixes are selected in building area and non-building area on P&lt;sub&gt;V&lt;/sub&gt;&amp;#160;component image respectively. After calculating the mean value of sample matrixes, the threshold values of building and non-building area are obtained based on the minimum error, and the building area and non-building area are extracted respectively according to the threshold values. Secondly, in the building area, the sample matrix of intact buildings and collapsed buildings is selected to calculate the variograms value, and then the variograms curve is drawn. When&amp;#160;the range a = 11, the variograms value of the building area is calculated, and the FCM algorithm is used to extract the calculation results of intact buildings and collapsed buildings respectively; In order to compare and analyze the classification results, based on P&lt;sub&gt;D &lt;/sub&gt;component, use K-means&amp;#160;algorithm to extract intact buildings and the collapsed building areas are extracted separately, and the results are compared with the results based on the variogram texture feature method. Finally, the intact buildings and collapsed buildings extracted are calibrated and the extraction accuracy is calculated by combining the Google Earth historical image.&lt;/p&gt;&lt;p&gt;At the end of this paper, the shortcomings of extraction results based on Yamaguchi four component decomposition method and variogram method are discussed, and the idea of combining geographic information data to further improve the accuracy of earthquake damage assessment is proposed.&lt;/p&gt;


2018 ◽  
Vol 10 (10) ◽  
pp. 1613 ◽  
Author(s):  
Wei Zhai ◽  
Chunlin Huang ◽  
Wansheng Pei

Rapidly and accurately obtaining collapsed building information for earthquake-stricken areas can help to effectively guide the implementation of the emergency response and can reduce disaster losses and casualties. This work is focused on rapid building earthquake damage detection in urban areas using a single post-earthquake polarimetric synthetic aperture radar (PolSAR) image. In an earthquake-stricken area, the buildings include both damaged buildings and undamaged buildings. The undamaged buildings are made up of both parallel buildings, whose array direction is parallel to the flight direction, and oriented buildings, whose array direction is not parallel to the flight direction. The damaged buildings after an earthquake are made up of completely collapsed buildings and residual damaged parallel walls and oriented walls of the damaged buildings. Therefore, we divide the buildings in earthquake-stricken areas into five kinds: intact parallel buildings, damaged parallel walls, collapsed buildings, intact oriented buildings, and damaged oriented walls. The two new polarimetric feature parameters of λ_H and H_λ are proposed to recognize the five kinds of buildings, and the Wishart supervised classification method is employed to further improve the extraction accuracy of the damaged buildings and undamaged buildings.


2021 ◽  
Vol 13 (6) ◽  
pp. 1146
Author(s):  
Yuliang Nie ◽  
Qiming Zeng ◽  
Haizhen Zhang ◽  
Qing Wang

Synthetic aperture radar (SAR) is an effective tool in detecting building damage. At present, more and more studies detect building damage using a single post-event fully polarimetric SAR (PolSAR) image, because it permits faster and more convenient damage detection work. However, the existence of non-buildings and obliquely-oriented buildings in disaster areas presents a challenge for obtaining accurate detection results using only post-event PolSAR data. To solve these problems, a new method is proposed in this work to detect completely collapsed buildings using a single post-event full polarization SAR image. The proposed method makes two improvements to building damage detection. First, it provides a more effective solution for non-building area removal in post-event PolSAR images. By selecting and combining three competitive polarization features, the proposed solution can remove most non-building areas effectively, including mountain vegetation and farmland areas, which are easily confused with collapsed buildings. Second, it significantly improves the classification performance of collapsed and standing buildings. A new polarization feature was created specifically for the classification of obliquely-oriented and collapsed buildings via development of the optimization of polarimetric contrast enhancement (OPCE) matching algorithm. Using this developed feature combined with texture features, the proposed method effectively distinguished collapsed and obliquely-oriented buildings, while simultaneously also identifying the affected collapsed buildings in error-prone areas. Experiments were implemented on three PolSAR datasets obtained in fully polarimetric mode: Radarsat-2 PolSAR data from the 2010 Yushu earthquake in China (resolution: 12 m, scale of the study area: ); ALOS PALSAR PolSAR data from the 2011 Tohoku tsunami in Japan (resolution: 23.14 m, scale of the study area: ); and ALOS-2 PolSAR data from the 2016 Kumamoto earthquake in Japan (resolution: 5.1 m, scale of the study area: ). Through the experiments, the proposed method was proven to obtain more than 90% accuracy for built-up area extraction in post-event PolSAR data. The achieved detection accuracies of building damage were 82.3%, 97.4%, and 78.5% in Yushu, Ishinomaki, and Mashiki town study sites, respectively.


Author(s):  
Jingtan Li ◽  
Maolin Xu ◽  
Hongling Xiu

With the resolution of remote sensing images is getting higher and higher, high-resolution remote sensing images are widely used in many areas. Among them, image information extraction is one of the basic applications of remote sensing images. In the face of massive high-resolution remote sensing image data, the traditional method of target recognition is difficult to cope with. Therefore, this paper proposes a remote sensing image extraction based on U-net network. Firstly, the U-net semantic segmentation network is used to train the training set, and the validation set is used to verify the training set at the same time, and finally the test set is used for testing. The experimental results show that U-net can be applied to the extraction of buildings.


2019 ◽  
Vol 11 (13) ◽  
pp. 1582 ◽  
Author(s):  
Mahdianpari ◽  
Mohammadimanesh ◽  
McNairn ◽  
Davidson ◽  
Rezaee ◽  
...  

Despite recent research on the potential of dual- (DP) and full-polarimetry (FP) Synthetic Aperture Radar (SAR) data for crop mapping, the capability of compact polarimetry (CP) SAR data has not yet been thoroughly investigated. This is of particular concern, given the availability of such data from RADARSAT Constellation Mission (RCM) shortly. Previous studies have illustrated potential for accurate crop mapping using DP and FP SAR features, yet what contribution each feature makes to the model accuracy is not well investigated. Accordingly, this study examined the potential of the early- to mid-season (i.e., May to July) RADARSAT-2 SAR images for crop mapping in an agricultural region in Manitoba, Canada. Various classification scenarios were defined based on the extracted features from FP SAR data, as well as simulated DP and CP SAR data at two different noise floors. Both overall and individual class accuracies were compared for multi-temporal, multi-polarization SAR data using the pixel- and object-based random forest (RF) classification schemes. The late July C-band SAR observation was the most useful data for crop mapping, but the accuracy of single-date image classification was insufficient. Polarimetric decomposition features extracted from CP and FP SAR data produced relatively equal or slightly better classification accuracies compared to the SAR backscattering intensity features. The RF variable importance analysis revealed features that were sensitive to depolarization due to the volume scattering are the most important FP and CP SAR data. Synergistic use of all features resulted in a marginal improvement in overall classification accuracies, given that several extracted features were highly correlated. A reduction of highly correlated features based on integrating the Spearman correlation coefficient and the RF variable importance analyses boosted the accuracy of crop classification. In particular, overall accuracies of 88.23%, 82.12%, and 77.35% were achieved using the optimized features of FP, CP, and DP SAR data, respectively, using the object-based RF algorithm.


2003 ◽  
Vol 9 (2) ◽  
pp. 151-179 ◽  
Author(s):  
NEUS CATALÀ ◽  
NÚRIA CASTELL ◽  
MARIO MARTÍN

The main issue when building Information Extraction (IE) systems is how to obtain the knowledge needed to identify relevant information in a document. Most approaches require expert human intervention in many steps of the acquisition process. In this paper we describe ESSENCE, a new method for acquiring IE patterns that significantly reduces the need for human intervention. The method is based on ELA, a specifically designed learning algorithm for acquiring IE patterns without tagged examples. The distinctive features of ESSENCE and ELA are that (1) they permit the automatic acquisition of IE patterns from unrestricted and untagged text representative of the domain, due to (2) their ability to identify regularities around semantically relevant concept-words for the IE task by (3) using non-domain-specific lexical knowledge tools such as WordNet, and (4) restricting the human intervention to defining the task, and validating and typifying the set of IE patterns obtained. Since ESSENCE does not require a corpus annotated with the type of information to be extracted and it uses a general purpose ontology and widely applied syntactic tools, it reduces the expert effort required to build an IE system and therefore also reduces the effort of porting the method to any domain. The results of the application of ESSENCE to the acquisition of IE patterns in an MUC-like task are shown.


2014 ◽  
Vol 14 (7) ◽  
pp. 1835-1841 ◽  
Author(s):  
A. Manconi ◽  
F. Casu ◽  
F. Ardizzone ◽  
M. Bonano ◽  
M. Cardinali ◽  
...  

Abstract. We present an approach to measure 3-D surface deformations caused by large, rapid-moving landslides using the amplitude information of high-resolution, X-band synthetic aperture radar (SAR) images. We exploit SAR data captured by the COSMO-SkyMed satellites to measure the deformation produced by the 3 December 2013 Montescaglioso landslide, southern Italy. The deformation produced by the deep-seated landslide exceeded 10 m and caused the disruption of a main road, a few homes and commercial buildings. The results open up the possibility of obtaining 3-D surface deformation maps shortly after the occurrence of large, rapid-moving landslides using high-resolution SAR data.


Sign in / Sign up

Export Citation Format

Share Document