scholarly journals AI_COVID: AUTOMATIC DIAGNOSIS OF COVID-19 USING FRONTAL CHEST X-RAY IMAGE

Author(s):  
I. Allaouzi ◽  
B. Benamrou ◽  
A. Allaouzi ◽  
M. Ouardouz ◽  
M. Ben Ahmed

Abstract. With the continued growth of confirmed cases of COVID-19, a highly infectious disease caused by a newly discovered coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2, or SARS-CoV-2, there is an urgent need to find ways to help clinicians fight the virus by reducing the workload and speeding up the diagnosis of COVID-19. In this work, we propose an artificial intelligence solution “AI_COVID” which can help radiologists to know if the lungs are infected with the virus in just a few seconds.AI_COVID is based on a pre-trained DenseNet-121 model that detects subtle changes in the lungs and an SVM classifier that decides whether these changes are caused by COVID-19 or other diseases. AI_COVID is trained on thousands of frontal chest x-rays of people who have contracted COVID-19, healthy people, and people with viral or bacterial pneumonia. The experimental study is tested on 781 chest x-rays from two publicly available chest x-ray datasets COVID-19 radiography database and COVIDx Dataset. The performance results showed that our proposed model (DenseNet-121 + SVM) demonstrated high performance and yielded excellent results compared to the current methods in the literature, with a total accuracy of 99.74% and 98.85% for binary classification (COVID-19 vs. No COVID-19) and multi-class classification (COVID-19 vs. Normal vs. Pneumonia), respectively.

COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 403-415
Author(s):  
Abeer Badawi ◽  
Khalid Elgazzar

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray images is presented commonly as a potential solution to help diagnose the disease. Numerous research has been reported on COVID-19 chest X-ray classification, but most of the previous studies have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset and affected the performance of the deep learning models. In this paper, we propose several image processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19, to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the proposed models outperform all existing techniques to date. Our models achieved 99.62% on the binary classification and 95.48% on the multi-class classification. Based on these findings, we provide a pathway for researchers to develop enhanced models with a balanced dataset that includes the highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers, as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajit Nair ◽  
Santosh Vishwakarma ◽  
Mukesh Soni ◽  
Tejas Patel ◽  
Shubham Joshi

Purpose The latest 2019 coronavirus (COVID-2019), which first appeared in December 2019 in Wuhan's city in China, rapidly spread around the world and became a pandemic. It has had a devastating impact on daily lives, the public's health and the global economy. The positive cases must be identified as soon as possible to avoid further dissemination of this disease and swift care of patients affected. The need for supportive diagnostic instruments increased, as no specific automated toolkits are available. The latest results from radiology imaging techniques indicate that these photos provide valuable details on the virus COVID-19. User advanced artificial intelligence (AI) technologies and radiological imagery can help diagnose this condition accurately and help resolve the lack of specialist doctors in isolated areas. In this research, a new paradigm for automatic detection of COVID-19 with bare chest X-ray images is displayed. Images are presented. The proposed model DarkCovidNet is designed to provide correct binary classification diagnostics (COVID vs no detection) and multi-class (COVID vs no results vs pneumonia) classification. The implemented model computed the average precision for the binary and multi-class classification of 98.46% and 91.352%, respectively, and an average accuracy of 98.97% and 87.868%. The DarkNet model was used in this research as a classifier for a real-time object detection method only once. A total of 17 convolutionary layers and different filters on each layer have been implemented. This platform can be used by the radiologists to verify their initial application screening and can also be used for screening patients through the cloud. Design/methodology/approach This study also uses the CNN-based model named Darknet-19 model, and this model will act as a platform for the real-time object detection system. The architecture of this system is designed in such a way that they can be able to detect real-time objects. This study has developed the DarkCovidNet model based on Darknet architecture with few layers and filters. So before discussing the DarkCovidNet model, look at the concept of Darknet architecture with their functionality. Typically, the DarkNet architecture consists of 5 pool layers though the max pool and 19 convolution layers. Assume as a convolution layer, and as a pooling layer. Findings The work discussed in this paper is used to diagnose the various radiology images and to develop a model that can accurately predict or classify the disease. The data set used in this work is the images bases on COVID-19 and non-COVID-19 taken from the various sources. The deep learning model named DarkCovidNet is applied to the data set, and these have shown signification performance in the case of binary classification and multi-class classification. During the multi-class classification, the model has shown an average accuracy 98.97% for the detection of COVID-19, whereas in a multi-class classification model has achieved an average accuracy of 87.868% during the classification of COVID-19, no detection and Pneumonia. Research limitations/implications One of the significant limitations of this work is that a limited number of chest X-ray images were used. It is observed that patients related to COVID-19 are increasing rapidly. In the future, the model on the larger data set which can be generated from the local hospitals will be implemented, and how the model is performing on the same will be checked. Originality/value Deep learning technology has made significant changes in the field of AI by generating good results, especially in pattern recognition. A conventional CNN structure includes a convolution layer that extracts characteristics from the input using the filters it applies, a pooling layer that reduces calculation efficiency and the neural network's completely connected layer. A CNN model is created by integrating one or more of these layers, and its internal parameters are modified to accomplish a specific mission, such as classification or object recognition. A typical CNN structure has a convolution layer that extracts features from the input with the filters it applies, a pooling layer to reduce the size for computational performance and a fully connected layer, which is a neural network. A CNN model is created by combining one or more such layers, and its internal parameters are adjusted to accomplish a particular task, such as classification or object recognition.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012001
Author(s):  
J Ureta ◽  
A Shrestha

Abstract Tuberculosis(TB) is one of the top 10 causes of death worldwide, and drug-resistant TB is a major public health concern especially in resource-constrained countries. In such countries, molecular diagnosis of drug-resistant TB remains a challenge; and imaging tools such as X-rays, which are cheaply and widely available, can be a valuable supplemental resource for early detection and screening. This study uses a specialized convolutional neural network to perform binary classification of chest X-ray images to classify drug-resistant and drug-sensitive TB. The models were trained and validated using the TBPortals dataset which contains 2,973 labeled X-ray images from TB patients. The classifiers were able to identify the presence or absence of drug-resistant Tuberculosis with an AUROC between 0.66–0.67, which is an improvement over previous attempts using deep learning networks.


2020 ◽  
Author(s):  
Amit Kumar Jaiswal ◽  
Prayag Tiwari ◽  
Vipin Kumar Rathi ◽  
Jia Qian ◽  
Hari Mohan Pandey ◽  
...  

The trending global pandemic of COVID-19 is the fastest ever impact which caused people worldwide by severe acute respiratory syndrome~(SARS)-driven coronavirus. However, several countries suffer from the shortage of test kits and high false negative rate in PCR test. Enhancing the chest X-ray or CT detection rate becomes critical. The patient triage is of utmost importance and the use of machine learning can drive the diagnosis of chest X-ray or CT image by identifying COVID-19 cases. To tackle this problem, we propose~COVIDPEN~-~a transfer learning approach on Pruned EfficientNet-based model for the detection of COVID-19 cases. The proposed model is further interpolated by post-hoc analysis for the explainability of the predictions. The effectiveness of our proposed model is demonstrated on two systematic datasets of chest radiographs and computed tomography scans. Experimental results with several baseline comparisons show that our method is on par and confers clinically explicable instances, which are meant for healthcare providers.


2021 ◽  
Vol 38 (3) ◽  
pp. 903-909
Author(s):  
Veeranjaneyulu Naralasetti ◽  
Reshmi Khadherbhi Shaik ◽  
Gayatri Katepalli ◽  
Jyostna Devi Bodapati

Diagnosis based on chest X-rays is widely used and approved for the diagnosis of various diseases such as Pneumonia. Manually screening of theses X-ray images technician or radiologist involves expertise and time consuming. Addressing this, we propose an automated approach for the diagnosis of pneumonia by assisting doctors in spotting infected areas in the X-ray images. We propose a deep Convolutional Neural Network (CNN) model for efficiently detecting the presence of pneumonia in the X-ray images. The proposed CNN is designed with 5 convolution blocks followed by 4 fully connected layers. In order to boost the performance of the model, we incorporate batch normalization, dynamic dropout, learning rate decay, L2 regularization weight decay along with Adam optimizer and binary Cross-Entropy loss function while training the model using back propagating algorithm. The proposed model is validated on two publicly accessible benchmark datasets, and the experimental studies conducted on these datasets indicate that the proposed model is efficient. The suggested CNN architecture with specified hyper parameters allows the model to outperform several existing models by achieving accuracy of 97.73% and 91.17% respectively for binary and multi-class classification tasks of pneumonia disease.


Author(s):  
Prabhjot Kaur ◽  
Shilpi Harnal ◽  
Rajeev Tiwari ◽  
Fahd S. Alharithi ◽  
Ahmed H. Almulihi ◽  
...  

COVID-19 declared as a pandemic that has a faster rate of infection and has impacted the lives and the country’s economy due to forced lockdowns. Its detection using RT-PCR is required long time and due to which its infection has grown exponentially. This creates havoc for the shortage of testing kits in many countries. This work has proposed a new image processing-based technique for the health care systems named “C19D-Net”, to detect “COVID-19” infection from “Chest X-Ray” (XR) images, which can help radiologists to improve their accuracy of detection COVID-19. The proposed system extracts deep learning (DL) features by applying the InceptionV4 architecture and Multiclass SVM classifier to classify and detect COVID-19 infection into four different classes. The dataset of 1900 Chest XR images has been collected from two publicly accessible databases. Images are pre-processed with proper scaling and regular feeding to the proposed model for accuracy attainments. Extensive tests are conducted with the proposed model (“C19D-Net”) and it has succeeded to achieve the highest COVID-19 detection accuracy as 96.24% for 4-classes, 95.51% for three-classes, and 98.1% for two-classes. The proposed method has outperformed well in expressions of “precision”, “accuracy”, “F1-score” and “recall” in comparison with most of the recent previously published methods. As a result, for the present situation of COVID-19, the proposed “C19D-Net” can be employed in places where test kits are in short supply, to help the radiologists to improve their accuracy of detection of COVID-19 patients through XR-Images.


AI ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 418-435
Author(s):  
Khandaker Haque ◽  
Ahmed Abdelgawad

Deep Learning has improved multi-fold in recent years and it has been playing a great role in image classification which also includes medical imaging. Convolutional Neural Networks (CNNs) have been performing well in detecting many diseases including coronary artery disease, malaria, Alzheimer’s disease, different dental diseases, and Parkinson’s disease. Like other cases, CNN has a substantial prospect in detecting COVID-19 patients with medical images like chest X-rays and CTs. Coronavirus or COVID-19 has been declared a global pandemic by the World Health Organization (WHO). As of 8 August 2020, the total COVID-19 confirmed cases are 19.18 M and deaths are 0.716 M worldwide. Detecting Coronavirus positive patients is very important in preventing the spread of this virus. On this conquest, a CNN model is proposed to detect COVID-19 patients from chest X-ray images. Two more CNN models with different number of convolution layers and three other models based on pretrained ResNet50, VGG-16 and VGG-19 are evaluated with comparative analytical analysis. All six models are trained and validated with Dataset 1 and Dataset 2. Dataset 1 has 201 normal and 201 COVID-19 chest X-rays whereas Dataset 2 is comparatively larger with 659 normal and 295 COVID-19 chest X-ray images. The proposed model performs with an accuracy of 98.3% and a precision of 96.72% with Dataset 2. This model gives the Receiver Operating Characteristic (ROC) curve area of 0.983 and F1-score of 98.3 with Dataset 2. Moreover, this work shows a comparative analysis of how change in convolutional layers and increase in dataset affect classifying performances.


Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.


Author(s):  
Saleh Albahli ◽  
Waleed Albattah

Objective: Automatic prediction of COVID-19 using deep convolution neural networks based pre-trained transfer models and Chest X-ray images. Method: This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using Deep Learning models, the research aims at evaluating the effectiveness and accuracy of different convolutional neural networks models in the automatic diagnosis of COVID-19 from X-ray images as compared to diagnosis performed by experts in the medical community. Result: Due to the fact that the dataset available for COVID-19 is still limited, the best model to use is the InceptionNetV3. Performance results show that the InceptionNetV3 model yielded the highest accuracy of 98.63% (with data augmentation) and 98.90% (without data augmentation) among the three models designed. However, as the dataset gets bigger, the Inception ResNetV2 and NASNetlarge will do a better job of classification. All the performed networks tend to over-fit when data augmentation is not used, this is due to the small amount of data used for training and validation. Conclusion: A deep transfer learning is proposed to detecting the COVID-19 automatically from chest X-ray by training it with X-ray images gotten from both COVID-19 patients and people with normal chest Xrays. The study is aimed at helping doctors in making decisions in their clinical practice due its high performance and effectiveness, the study also gives an insight to how transfer learning was used to automatically detect the COVID-19.


Sign in / Sign up

Export Citation Format

Share Document