scholarly journals Geodynamics of the Indian Lithospheric Plate relative to the neighbouring Plates as revealed by Space Geodetic Measurements

Author(s):  
S. Krishna ◽  
J. Mathew ◽  
R. Majumdar ◽  
P. Roy ◽  
K. Vinod Kumar

The Indian Plate is highly dynamic in nature which in turn makes the Indo-Eurassian collision zone the foci of most of the historic large magnitude earthquakes. Processing of positional information from continuously observing reference stations is one of the space based geodetic techniques used globally and nationally to understand the crustal dynamics. The present study evaluates the dynamic nature of the Indian plate relative to its adjoining plates using the permanent GPS data (2011 to 2013) of 12 International GNSS Service (IGS), which are spread across the Indian, Eurassian, Australian, Somaliyan and African plates. The data processing was carried out using GAMIT/GLOBK software. The results indicate that the average velocity for the two IGS stations on the Indian Plate (Hyderabad and Bangalore) is 54.25 mm/year towards NE in the ITRF-2008 reference frame. The relative velocity of various stations with respect to the Indian plate has been estimated using the Bangalore station and has been found that the stations in the Eurasian plate (Lhasa, Urumqi, Bishkek and Kitab) are moving with velocity ranging from 25 to 33 mm/year in the SE direction resulting in compressional interaction with the Indian plate. This study reveals and confirms to the previous studies that the Indian- Eurassian-Australian Plates are moving at different relative velocities leading to compressional regimes at their margins leading to seismicity in these zones.

2021 ◽  
Author(s):  
Abdul Qayyum ◽  
Nalan Lom ◽  
Eldert L Advokaat ◽  
Wim Spakman ◽  
Douwe J.J van Hinsbergen

<p>Much of our understanding of the dynamics of slab break-off and its geological signatures rely on numerical models with a simplified set-up, in which slab break-off follows arrival of a continent in a mantle-stationary trench, the subsequent arrest of plate convergence, and after a delay time of 10 Ma or more, slab break off under the influence of slab pull. However, geological reconstructions show that plate tectonic reality deviates from this setup: post-collisional convergence is common, trenches are generally not stationary relative to mantle, neither before nor after collision, and there are many examples in which the mantle structure below collision zones is characterized by more, or fewer slabs than collisions.</p><p>A key example of the former is the India-Asia collision zone, where the mantle below India hosts two major, despite the common view of a single collision. Kinematic reconstructions reveal that post-collisional convergence amounted 1000s of kms, and was associated with ~1000 km of trench/collision zone advance. Collision between India-Asia collision zone may provide a good case study to determine the result of post-collisional convergence and absolute lower and upper plate motion on mantle structure, and to evaluate to what extent commonly assumed diagnostic geological phenomena of slab break-off apply.</p><p>In addition to the previously identified major India, Himalaya, and Burma slabs, we here map smaller slabs below Afghanistan and the Himalaya that reveal the latest phases of break-off. We show that west-dipping and east-dipping slabs west and east of India, respectively, are dragged northward parallel to the slab, slabs subducting north of India are overturned, and that the shallowest slab fragments are found in the location where the horizontally underthrust Indian lithosphere below Tibet is narrowest. Our results confirm that northward Indian absolute plate motion continued during two episodes of break-off of large (>1000 km wide) slabs, and decoupling of several smaller fragments. These slabs are currently found south of the present day trench locations. The slabs are located even farther south (>1000 km) of the leading edge of the Indian continental lithosphere, currently underthrust below Tibet, from which the slabs detached, signalling ongoing absolute Indian plate motion. We conclude that the multiple slab break-off events in this setting of ongoing plate convergence and trench advance is better explained by shearing off of slabs from the downgoing plate, possibly at a depth corresponding to the base of the Indian continental lithosphere, are not (necessarily) related to the timing of collision. A recently proposed, detailed diachronous record of deformation, uplift, and oroclinal bending in the Himalaya that was liked to slab break-off fits well with our kinematically reconstructed timing of the last slab shear-off, and may provide an important reference geological record for this process. We find that the commonly applied conceptual geological signatures of slab break-off do not apply to the India-Asia collision zone, or to similar settings and histories such as the Arabia-Eurasia collision zone. Our study provides more realistic boundary conditions for future numerical models that aim to assess the dynamics of subduction termination and its geological signatures.</p>


2020 ◽  
Author(s):  
Silvia Crosetto ◽  
Sabrina Metzger ◽  
Dirk Scherler ◽  
Onno Oncken

<p>The Pamir and Hindu Kush are located at the western tip of the India-Asia collision zone. Approximately a third of the northward motion of India’s western syntax is mostly accommodated by continental-scale underthrusting of the Indian plate beneath Asia. On its way northwards the arcuate, convex Pamir mountain range acts as a rigid indenter penetrating the weaker Eurasian plate, while lateral extrusion occurs to the west in the Tajik Depression.</p><p>Intense present-day shallow seismicity indicates active deformation along the northern and north-western semi-arid margin of the Pamir, where over the last century several M>6 and three M>7 crustal earthquakes, including a recent M6.4 event in 2016, were recorded. Earthquakes are distributed in the proximity of three main fault systems: the Pamir thrust system to the north, and the Darvaz fault and Vakhsh thrust system to the north-west. The pronounced topographic expression of these lithospheric faults is associated to a deeply incised landscape, which was profoundly shaped by past widespread glaciations. The transient evolution of the landscape following deglaciation is observed in the dynamic river network, characterised by intense fluvial incision and changes in the fluvial connectivity of the drainage system.</p><p>At depth, recent seismic tomography studies suggest delamination, stretching and tearing of the Asian slab beneath SW Pamir, and slab break-off underneath Hindu Kush. Slab break-off episodes are known to result in stress surges in the overlying lithosphere, potentially causing deformation and uplift.</p><p>In this complex system characterised by an important interplay between tectonics, climate and surface processes, we use qualitative and quantitative analyses of the topography and of the drainage systems evolution, inclusive of numerical tools, in order to define what is –and has been- the role played by the main lithospheric active faults of this area. In addition, we aim at identifying how landscape and surface dynamics respond, temporally and spatially, to processes, such as slab tearing/break-off, occurring at depth.</p>


Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
G. Bhattacharya ◽  
D. M. Robinson ◽  
D. A. Orme

Abstract The India-Asia continental collision zone archives a sedimentary record of the tectonic, geodynamic, and erosional processes that control the thermal history of the Himalayan orogenic interior since the onset of collision in early Paleogene time. In this paper, we present new (U-Th)/He thermochronometric cooling age data from 18 detrital zircons (ZHe) and 19 detrital apatites (AHe) of the early Eocene–early Miocene (ca. 50–23 Ma) continental facies of the Indus Group along the India-Asia collision zone in Ladakh, northwest (NW) India. This along-strike regional-scale low-temperature thermochronometric data set from the Indus basin is the first report of ZHe and AHe cooling ages from western and eastern Ladakh. Thermal modeling of our ZHe and AHe cooling ages indicates a postdepositional Neogene cooling signal in the Indus Group. Cooling initiated at ca. 21–19 Ma, was operational along the ~300 km strike of the collision zone in NW India by ca. 11 Ma, and continued until ca. 3 Ma. The Miocene cooling signal, also present along the India-Asia collision zone in south Tibet, is a continental-scale cooling event likely linked to increased erosional efficiency by the Indus and Yarlung Rivers across an elevated region resulting from the subduction dynamics of the underthrusting Indian plate.


Geographical and tectonic settings of Bangladesh make it susceptible to seismic hazard. Besides, historical evidence says that numerous earthquakes with very large magnitude occur in this region. Currently, the Indian plate is gradually moving in the northeast and subduce beneath the Eurasian Plate. So, geologist suspects that a terrible earthquake with greater than eight (>8) magnitude is inevitable in this highly populated region. Therefore, assessing the integrated vulnerability of earthquake in this region is a prime concern for most of the geologists. In this paper, we performed a rigorous assessment of the earthquake’s vulnerabilities by analysing the historical earthquakes from the last 118 years (1901-2018) that occurred in Bangladesh and the surrounding regions (20.65° N to 28.00° N latitude and 87.00° E to 93.75° E longitude). Moreover, we also perform probability-based distribution analysis to show the intrinsic relationship among various parameters, especially earthquake magnitude and depth. Here, the necessary data are collected from the USGS (United States Geological Survey).


1974 ◽  
Vol 11 (1) ◽  
pp. 1-17 ◽  
Author(s):  
E. Irving ◽  
F. K. North ◽  
R. Couillard

We identify four sets of factors governing oil occurrence—climate (especially temperature), mineral nutrients, tectonic factors controlling initial basin formation, and tectonic factors controlling preservation of the oil. We argue that all factors are themselves subject to the framework imposed by plate tectonics. If we are to consider all Phanerozoic oil deposits, the only factor capable of quantitative comparison for all the periods is the first one, in that it is partly a function of latitude.A paleolatitude analysis has been made for both reservoir rocks and preferred source rocks for all petroliferous basins, with results weighted according to total reserves. No statistically satisfactory relationship was found between oil and paleolatitude that would embrace all Phanerozoic deposits. Most Paleozoic oil was formed in rocks deposited in low latitudes, but this may be an accident of preservation. The much larger Mesozoic deposits were similarly related to low paleolatitudes, but this result is heavily biased by the huge reserves of the Persian Gulf. If these are excluded, Mesozoic oil occurs with equal probability in high and in low paleolatitudes. Cenozoic oil is uniformly distributed with respect to paleolatitude.The distribution of oil with time reveals that 71% of all known oil was probably formed in the late Mesozoic, most of it (60%) in the mid-Cretaceous. The first requirement in any general theory of oil occurrence, therefore, is to understand why so much oil was formed near the present Persian Gulf, and to a lesser extent in Middle America, during such a short interval of geological time. We attempt to show that all four controlling factors were optimized in these two places for this brief time-span. In the timetable of plate tectonics, two large marine embayments opened astride the equator in the late Mesozoic, and these may or may not have been connected through the western Mediterranean. One embayment contained the Persian Gulf, and the other, Middle America. The renewal of mantle convection at about −100 m.y. activated these embayments, abruptly increased the rate of sea-floor spreading, and enlarged the oceanic ridges, causing maximum development of warm, shallow seas and releasing, through igneous activity, greatly increased quantities of mineral nutrients.The geometry of subsequent plate activity was such that the Persian Gulf was tectonically protected by the rapid northward movement of the Indian plate (which absorbed most of the impact with the Eurasian plate), and the Gulf of Mexico was protected by the northeastward movement of the Antillean arc.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amit Kumar ◽  
Naresh Kumar ◽  
Sagarika Mukhopadhyay ◽  
Simon L. Klemperer

The major scientific purpose of this work is to evaluate the geodynamic processes involved in the development of tectonic features of NE India and its surroundings. In this work, we have obtained tomographic images of the crust and uppermost mantle using inversion of Rayleigh waveform data to augment information about the subsurface gleaned by previous works. The images obtained reveal a very complicated tectonic regime. The Bengal Basin comprises a thick layer of sediments with the thickness increasing from west to east and a sudden steepening of the basement on the eastern side of the Eocene Hinge zone. The nature of the crust below the Bengal Basin varies from oceanic in the south to continental in the north. Indo-Gangetic and Brahmaputra River Valleys comprise ∼5–6-km-thick sediments. Crustal thickness in the higher Himalayas and southern Tibet is ∼70 km but varies between ∼30 and ∼40 km in the remaining part. Several patches of low-velocity medium present in the mid-to-lower crust of southern Tibet along and across the major rifts indicate the presence of either partially molten materials or aqueous fluid. Moho depth decreases drastically from west to east across the Yadong-Gulu rift indicating the complex effect of underthrusting of the Indian plate below the Eurasian plate. Crust and upper mantle below the Shillong Massif and Mikir Hills are at a shallow level. This observation indicates that tectonic forces contribute to the uprising of the Massif.


2021 ◽  
Vol 13 (24) ◽  
pp. 5142
Author(s):  
Yujiang Li ◽  
Yongsheng Li ◽  
Xingping Hu ◽  
Haoqing Liu

Different types of focal mechanism solutions for the 19 March 2021 Mw 5.7 Nakchu earthquake, Tibet, limit our understanding of this earthquake’s seismogenic mechanism and geodynamic process. In this study, the coseismic deformation field was determined and the geometric parameters of the seismogenic fault were inverted via Interferometric Synthetic Aperture Radar (InSAR) processing of Sentinel-1 data. The inversion results show that the focal mechanism solutions of the Nakchu earthquake are 237°/69°/−70° (strike/dip/rake), indicating that the seismogenic fault is a NEE-trending, NW-dipping fault dominated by the normal faulting with minor sinistral strike-slip components. The regional tectonic stress field derived from the in-situ stress measurements shows that the orientation of maximum principal compressive stress around the epicenter of the Nakchu earthquake is NNE, subparallel to the fault strike, which controlled the dominant normal faulting. The occurrence of seven M ≥ 7.0 historical earthquakes since the M 7.0 Shenza earthquake in 1934 caused a stress increase of 1.16 × 105 Pa at the hypocenter, which significantly advanced the occurrence of the Nakchu earthquake. Based on a comprehensive analysis of stress fields and focal mechanisms of the Nakchu earthquake, we propose that the dominated normal faulting occurs to accommodate the NE-trending compression of the Indian Plate to the Eurasian Plate and the strong historical earthquakes hastened the process. These results provide a theoretical basis for understanding the geometry and mechanics of the seismogenic fault that produced the Nakchu earthquake.


2021 ◽  
Author(s):  
H. Lazuardi

One-dimensional and two-dimensional basin modeling can be used to infer the burial history, hydrocarbon generation, and migration of hydrocarbon. In this paper, the study focuses on 1D and 2D basin modeling in North Sumatera Offshore as one of the prolific deep-water basins in Indonesia. The data consists of 5 exploration wells and 2D seismic data that are vitrinite reflectance, rock-eval data, and bottom-hole temperature. Well data’s have been used to calibrate heat flow and thermal evolution of the basin, while 2D seismic data have been used to support the basin modeling. Based on the result, the basin formed by the collision of the Australian Plate with the Eurasian Plate evolved due to block faulting that caused a pull-apart basin. In the Early Oligocene, changes in the movement of the Indian plate also changed tectonics from subduction to strike-slip fault resulting in Andaman Sea rifting. The southern part of the research area was affected by the Andaman Sea rifting, which caused unconformities in the Middle Miocene. The main generating source rock is the Bampo, Belumai, and Baong Formation, which is predominantly consist of Type III kerogen (gas prone) in the north and Type II/III (mix oil and gas prone) in the South. The timing of petroleum generation may have occurred is in the Early Pliocene. The Early oil generation which occurred simultaneously with the seal rock and may have been migrated to the Middle and Late Miocene reservoir through the faults as a vertical migration pathway. The results of this study allow us to improve the hydrocarbon prospect and reduce exploration risks.


2020 ◽  
Author(s):  
Sujata Dhar ◽  
Nagarajan Balasubramanian ◽  
Onkar Dikshit

<p>India extends from 8° 4’ N to 37° 6’ N latitude and 68° 7’ E to 97° 25’ E longitude. It lies largely on the Indian plate. Major earthquakes generally happen along tectonic plate boundaries. But, Indian subcontinent has experienced some of the largest earthquakes, with magnitude more than 7, within it. This directs the possibility of significant intraplate movement in the Indian plate. Narmada river flows through the central part of India and is considered as the boundary between northern and southern India. It is tectonically active, which is not found in other river basins. Geophysical studies in the Son Narmada Fault (SNF) zone reveal that this is a zone of intense deep-seated faulting which has been reactivated and hence, this is the cause of major earthquakes and various tectonically induced landforms in that region recently. Estimates of intraplate strain across Narmada Son Lineament (NSL) from early campaign-mode GPS data and geological studies suggested movement of 2-3 mm per year. The Indian Plate is currently moving northeast at 5 cm/year, while the Eurasian Plate is moving northeast at only 2 cm/yr. Most of the research has been done with geological studies to determine the rate of the movement along NSL. We are considering Global Navigation Satellite System (GNSS) data for around 16 continuously operating and well distributed sites in India. We are using BERNESE and GAMIT software’s for GNSS data processing. Both are scientific GNSS processing software with single differencing for ambiguity resolution. This is the first time in India that movement across NSL, with ITRF14 reference frame, will be determined from any space geodetic technique dominantly. In this study, several continuous GNSS stations in India along with nearby IGS sites from 2013 to 2018 are used to examine the distribution and magnitude of intraplate movement across the active SNF.</p><p>Keywords: Indian plate, Son Narmada Fault, GNSS, BERNESE, GAMIT, ITRF14</p>


Sign in / Sign up

Export Citation Format

Share Document