scholarly journals Marine Rapid Environmental Assessment in the Gulf of Taranto: a multiscale approach

Author(s):  
Nadia Pinardi ◽  
Vladyslav Lyubartsev ◽  
Nicola Cardellicchio ◽  
Claudio Caporale ◽  
Stefania Ciliberti ◽  
...  

Abstract. A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large scale circulation structure and associated mesoscale variability. The mapping of the mesoscale and large scale geostrophic circulation showed the presence of an anticyclonic large scale Gyre occupying the central open ocean area of the Gulf of Taranto. On the periphery of the Gyre upwelling is evident where surface waters are colder and saltier than at the center of the Gyre. Over a one-week period, the rim current of the Gyre undergoes large changes which are interpreted as baroclinic/barotropic instabilities, generating small scale cyclonic eddies in the periphery of the anticyclone. The eddies are generally small, one of which can be classified as a submesoscale eddy, due to its size. This eddy field modulates the upwelling regime in the Gyre periphery.

2016 ◽  
Vol 16 (12) ◽  
pp. 2623-2639 ◽  
Author(s):  
Nadia Pinardi ◽  
Vladyslav Lyubartsev ◽  
Nicola Cardellicchio ◽  
Claudio Caporale ◽  
Stefania Ciliberti ◽  
...  

Abstract. A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The mapping of the mesoscale and large-scale geostrophic circulation showed the presence of an anticyclonic large-scale gyre occupying the central open ocean area of the Gulf of Taranto. On the periphery of the gyre upwelling is evident where surface waters are colder and saltier than at the center of the gyre. Over a 1-week period, the rim current of the gyre undergoes large changes which are interpreted as baroclinic–barotropic instabilities, generating small-scale cyclonic eddies in the periphery of the anticyclone. The eddies are generally small, one of which can be classified as a submesoscale eddy due to its size. This eddy field modulates the upwelling regime in the gyre periphery.


2017 ◽  
Vol 35 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Ayman Mahrous

Abstract. This paper presents observational evidence of frequent ionospheric perturbations caused by the magnetar flare of the source SGR J1550–5418, which took place on 22 January 2009. These ionospheric perturbations are observed in the relative change of the total electron content (ΔTEC/Δt) measurements from the coherent ionospheric Doppler radar (CIDR). The CIDR system makes high-precision measurements of the total electron content (TEC) change along ray-paths from ground receivers to low Earth-orbiting (LEO) beacon spacecraft. These measurements can be integrated along the orbital track of the beacon satellite to construct the relative spatial, not temporal, TEC profiles that are useful for determining the large-scale plasma distribution. The observed spatial TEC changes reveal many interesting features of the magnetar signatures in the ionosphere. The onset phase of the magnetar flare was during the CIDR's nighttime satellite passage. The nighttime small-scale perturbations detected by CIDR, with ΔTEC/Δt  ≥  0.05 TECU s−1, over the eastern Mediterranean on 22 January 2009 were synchronized with the onset phase of the magnetar flare and consistent with the emission of hundreds of bursts detected from the source. The maximum daytime large-scale perturbation measured by CIDR over northern Africa and the eastern Mediterranean was detected after ∼ 6 h from the main phase of the magnetar flare, with ΔTEC/Δt  ≤  0.10 TECU s−1. These ionospheric perturbations resembled an unusual poleward traveling ionospheric disturbance (TID) caused by the extraterrestrial source. The TID's estimated virtual velocity is 385.8 m s−1, with ΔTEC/Δt  ≤  0.10 TECU s−1.


2019 ◽  
Vol 876 ◽  
pp. 1108-1128 ◽  
Author(s):  
Till Zürner ◽  
Felix Schindler ◽  
Tobias Vogt ◽  
Sven Eckert ◽  
Jörg Schumacher

Combined measurements of velocity components and temperature in a turbulent Rayleigh–Bénard convection flow at a low Prandtl number of $Pr=0.029$ and Rayleigh numbers of $10^{6}\leqslant Ra\leqslant 6\times 10^{7}$ are conducted in a series of experiments with durations of more than a thousand free-fall time units. Multiple crossing ultrasound beam lines and an array of thermocouples at mid-height allow for a detailed analysis and characterization of the complex three-dimensional dynamics of the single large-scale circulation roll in a cylindrical convection cell of unit aspect ratio which is filled with the liquid metal alloy GaInSn. We measure the internal temporal correlations of the complex large-scale flow and distinguish between short-term oscillations associated with a sloshing motion in the mid-plane as well as varying orientation angles of the velocity close to the top/bottom plates and the slow azimuthal drift of the mean orientation of the roll as a whole that proceeds on a time scale up to a hundred times slower. The coherent large-scale circulation drives a vigorous turbulence in the whole cell that is quantified by direct Reynolds number measurements at different locations in the cell. The velocity increment statistics in the bulk of the cell displays characteristic properties of intermittent small-scale fluid turbulence. We also show that the impact of the symmetry-breaking large-scale flow persists to small-scale velocity fluctuations thus preventing the establishment of fully isotropic turbulence in the cell centre. Reynolds number amplitudes depend sensitively on beam-line position in the cell such that different definitions have to be compared. The global momentum and heat transfer scalings with Rayleigh number are found to agree with those of direct numerical simulations and other laboratory experiments.


2019 ◽  
Vol 865 ◽  
pp. 681-719
Author(s):  
Catherine A. Vreugdenhil ◽  
Bishakhdatta Gayen ◽  
Ross W. Griffiths

Direct numerical simulations are used to investigate the nature of fully resolved small-scale convection and its role in large-scale circulation in a rotating $f$-plane rectangular basin with imposed surface temperature difference. The large-scale circulation has a horizontal geostrophic component and a deep vertical overturning. This paper focuses on convective circulation with no wind stress, and buoyancy forcing sufficiently strong to ensure turbulent convection within the thermal boundary layer (horizontal Rayleigh numbers $Ra\approx 10^{12}{-}10^{13}$). The dynamics are found to depend on the value of a convective Rossby number, $Ro_{\unicode[STIX]{x0394}T}$, which represents the strength of buoyancy forcing relative to Coriolis forces. Vertical convection shifts from a mean endwall plume under weak rotation ($Ro_{\unicode[STIX]{x0394}T}>10^{-1}$) to ‘open ocean’ chimney convection plus mean vertical plumes at the side boundaries under strong rotation ($Ro_{\unicode[STIX]{x0394}T}<10^{-1}$). The overall heat throughput, horizontal gyre transport and zonally integrated overturning transport are then consistent with scaling predictions for flow constrained by thermal wind balance in the thermal boundary layer coupled to vertical advection–diffusion balance in the boundary layer. For small Rossby numbers relevant to circulation in an ocean basin, vertical heat transport from the surface layer into the deep interior occurs mostly in ‘open ocean’ chimney convection while most vertical mass transport is against the side boundaries. Both heat throughput and the mean circulation (in geostrophic gyres, boundary currents and overturning) are reduced by geostrophic constraints.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
D. Sitarski ◽  
R. J. Lee ◽  
J. R. Saylor ◽  
John P. McHugh

An experiment in a rectangular basin of water is used to demonstrate that a large-scale circulation will result from a zero-mean thermal forcing. The thermal force is a spatially periodic pattern of heating and cooling at the top surface, achieved with an interdigitated array of hot and cold tubes. The experimental results show a very robust, steady flow with ascending flows at each end of the tank and a single descending jet near the left wall. These results suggest that small-scale forcing in surface-driven flows may result in significant large-scale subsurface motion.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 436
Author(s):  
Maria Migliazza ◽  
Maria Teresa Carriero ◽  
Andrea Lingua ◽  
Emanuele Pontoglio ◽  
Claudio Scavia

Geostructural rock mass surveys and the collection of data related to discontinues provide the basis for the characterization of rock masses and the study of their stability conditions. This paper describes a multiscale approach that was carried out using both non-contact techniques and traditional support techniques to survey certain geometrical features of discontinuities, such as their orientation, spacing, and useful persistence. This information is useful in identifying the possible kinematics and stability conditions. These techniques are extremely useful in the case study of the Elva valley road (Northern Italy), in which instability phenomena are spread across 9 km in an overhanging rocky mass. A multiscale approach was applied, obtaining digital surface models (DSMs) at three different scales: large-scale DSM of the entire road, a medium-scale DSM to assess portions of the slope, and a small-scale DSM to assess single discontinuities. The georeferenced point cloud and consequent DSMs of the slopes were obtained using an unmanned aerial vehicle (UAV) and terrestrial photogrammetric technique, allowing topographic and rapid traditional geostructural surveys. This technique allowed us to take measurements along the entire road, obtaining geometrical data for the discontinuities that are statistically representative of the rock mass and useful in defining the possible kinematic mechanisms and volumes of potentially detachable blocks. The main purpose of this study was to analyse how the geostructural features of a rock mass can affect the stability slope conditions at different scales in order to identify road sectors susceptible to different potential failure mechanisms using only kinematic analysis.


2021 ◽  
Author(s):  
Jesse C. Anderson ◽  
Subin Thomas ◽  
Prasanth Prabhakaran ◽  
Raymond A. Shaw ◽  
Will Cantrell

Abstract. Microphysical processes are important for the development of clouds and thus Earth's climate. For example, turbulent fluctuations in the water vapor concentration, r, and temperature, T, cause fluctuations in the saturation ratio, S. Because S is the driving factor in the condensational growth of droplets, fluctuations may broaden the cloud droplet size distribution due to individual droplets experiencing different growth rates. The small scale turbulent fluctuations in the atmosphere that are relevant to cloud droplets are difficult to quantify through field measurements. We investigate these processes in the laboratory, using Michigan Tech's Π Chamber. The Π Chamber utilizes Rayleigh-Benard convection (RBC) to create the turbulent conditions inherent in clouds. In RBC it is common for a large scale circulation (LSC) to form. As a consequence of the LSC, the temperature field of the chamber is not spatially uniform. In this paper, we characterize the LSC in the Π chamber and show how it affects the shape of the distributions of r, T and S. The LSC was found to follow a single roll with an updraft and downdraft along opposing walls of the chamber. Near the updraft (downdraft), the distributions of T and r were positively (negatively) skewed. S consistently had a negatively skewed distribution, with the downdraft being the most negative.


2009 ◽  
Vol 100 (1-2) ◽  
pp. 137-151 ◽  
Author(s):  
C. Oikonomou ◽  
H. A. Flocas ◽  
M. Hatzaki ◽  
A. Nisantzi ◽  
D. N. Asimakopoulos

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 582 ◽  
Author(s):  
Hui Yang ◽  
Yikun Wei ◽  
Zuchao Zhu ◽  
Huashu Dou ◽  
Yuehong Qian

Statistics of heat transfer in two-dimensional (2D) turbulent Rayleigh-Bénard (RB) convection for Pr=6,20,100 and 106 are investigated using the lattice Boltzmann method (LBM). Our results reveal that the large scale circulation is gradually broken up into small scale structures plumes with the increase of Pr, the large scale circulation disappears with increasing Pr, and a great deal of smaller thermal plumes vertically rise and fall from the bottom to top walls. It is further indicated that vertical motion of various plumes gradually plays main role with increasing Pr. In addition, our analysis also shows that the thermal dissipation is distributed mainly in the position of high temperature gradient, the thermal dissipation rate εθ already increasingly plays a dominant position in the thermal transport, εu can have no effect with increase of Pr. The kinematic viscosity dissipation rate and the thermal dissipation rate gradually decrease with increasing Pr. The energy spectrum significantly decreases with the increase of Pr. A scope of linear scaling arises in the second order velocity structure functions, the temperature structure function and mixed structure function(temperature-velocity). The value of linear scaling and the 2nd-order velocity decrease with increasing Pr, which is qualitatively consistent with the theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document