scholarly journals Probabilistic tsunami inundation assessment of Kuroshio Town,Kochi Prefecture, Japan considering the Nankai-Tonankai megathrust rupture scenarios

2020 ◽  
Author(s):  
Katsuichiro Goda ◽  
Tomohiro Yasuda ◽  
Nobuhito Mori ◽  
Ario Muhammad ◽  
Raffaele De Risi ◽  
...  

Abstract. The Nankai-Tonankai megathrust earthquake and tsunami pose significant risks to coastal communities in western and central Japan. Historically, this seismic region hosted many major earthquakes, and the current national tsunami hazard assessments in Japan consider megathrust events having moment magnitudes between 9.0 and 9.1. In responding to the lack of rigorous uncertainty analysis, this study presents an extensive tsunami hazard assessment for the Nankai-Tonankai Trough events, focusing upon the southwestern Pacific region of Japan. A set of 1,000 kinematic earthquake rupture models is generated via stochastic source modelling approaches, and Monte Carlo tsunami simulations are carried out by considering high-resolution grid data of 10-m and coastal defense structures. Significant advantages of the stochastic tsunami simulation methods include the enhanced capabilities to quantify the uncertainty associated with tsunami hazard assessments and to effectively visualize the results in an integrated manner. The results from the stochastic tsunami simulations can inform regional and local tsunami risk reduction actions in light of inevitable uncertainty associated with such probabilistic tsunami hazard assessments, and complement conventional deterministic tsunami scenarios and their hazard predictions, such as those developed by the Central Disaster Management Council of the Japanese Cabinet Office.

2020 ◽  
Vol 20 (11) ◽  
pp. 3039-3056
Author(s):  
Katsuichiro Goda ◽  
Tomohiro Yasuda ◽  
Nobuhito Mori ◽  
Ario Muhammad ◽  
Raffaele De Risi ◽  
...  

Abstract. Nankai–Tonankai megathrust earthquakes and tsunamis pose significant risks to coastal communities in western and central Japan. Historically, this seismic region hosted many major earthquakes, and the current national tsunami hazard assessments in Japan consider megathrust events as those having moment magnitudes between 9.0 and 9.1. In responding to the lack of rigorous uncertainty analysis, this study presents an extensive tsunami hazard assessment for the Nankai–Tonankai Trough events, focusing on the southwestern Pacific region of Japan. A set of 1000 kinematic earthquake rupture models is generated via stochastic source modelling approaches, and Monte Carlo tsunami simulations are carried out by considering high-resolution grid data of 10 m and coastal defence structures. Significant advantages of the stochastic tsunami simulation methods include the enhanced capabilities to quantify the uncertainty associated with tsunami hazard assessments and to effectively visualize the results in an integrated manner. The results from the stochastic tsunami simulations can inform regional and local tsunami risk reduction actions in light of inevitable uncertainty associated with such tsunami hazard assessments and complement conventional deterministic tsunami scenarios and their hazard predictions, such as those developed by the Central Disaster Management Council of the Japanese Cabinet Office.


2021 ◽  
Vol 331 ◽  
pp. 04006
Author(s):  
Leli Honesti ◽  
Meli Muchlian

A tsunami hazard is an adverse event that causes damage to properties and loss of life. The problem in assessing a tsunami risk zone for a small area is significant, as available tsunami inundation zone data does not give detailed information for tsunami inundation and run-up in every nested grid. Hence, this study aims to establish a tsunami risk map in the Pasir Jambak sub-district, Padang, Indonesia. The map was carried out in every nested grid point of the area and on a large scale (1:5,000). The TUNAMI N3 program was used for the simulation of the tsunami inundation. A tsunami assessment was made through simulations in nine scenarios of fault parameter data for Sipora block earthquakes. The result of the study provides a tsunami inundation map. Furthermore, this tsunami inundation map can be used for communities, local authorities, government, and others for many studies, and decision-makers can come up with mitigation plans for a small study area.


2021 ◽  
Vol 10 (1) ◽  
pp. 3438-3448
Author(s):  
T.D.C. Pushpakumara ◽  
◽  
Shohan Gamlath ◽  

Tsunami is a coastal hazard which occur due to undersea earthquakes, Meteorite falls, volcanic eruptions or even nuclear weapon operations. The tsunami hazard which occurred in December 2004 was generated due to an undersea earthquake 400m west of northern Sumatra and it inundated coastal areas of Indonesia, Sri Lanka, Thailand and India. This hazard became one of the worst disasters in the history resulting in over thirty thousand fatalities and over seventy thousand house damage in Sri Lanka. This study is focused towards creation of GIS based Tsunami risk map for Galle city which was badly hit by the 2004 Tsunami. Tsunami vulnerability was assessed using weighted overlay spatial method with input parameters of population density, sex ratio, age ratio, disability ratio and damaged building ratio. Tsunami hazard map was developed based on tsunami inundation map which was published by Coastal research and design, costal conservation and resource management department with assistant from Disaster management centre using the Cornell Multigrid Coupled Tsunami Model (COMCOT). Vulnerable and hazard maps were analysed and incorporated to develop final risk map using GIS tool. Keywords GIS; Tsunami Inundation Map; Tsunami Risk Map; Vulnerability; Disaster


2021 ◽  
Vol 925 (1) ◽  
pp. 012037
Author(s):  
Martha Alvianingsih ◽  
Willy Ivander Pradipta ◽  
Intan Hayatiningsih ◽  
Nuraini Rahma Hanifa

Abstract Pangandaran and Pananjung villages are located in the southern coast of Java Island, prone to tsunami hazard originating from a megathrust earthquake off south of Java Island. Those villages experience a tsunami earthquake on 2006 from an M7.8 earthquake. The National Center for Earthquake Studies released a map of the sources and hazards of Indonesia’s earthquake in 2017 with a potential earthquake of magnitude 8.7-9.2 in the megathrust of Java Island. This research aims to estimate the potential number of buildings and the population affected by tsunami inundation from two scenario; first scenario is based on historical event of a M7.8 intraplate earthquake, and second scenario is based on a plausible M8.7 intraplate earthquake. The first scenario tsunami modeling resulted an inundation of 108.606 ha, while in the second scenario estimate an 867.351 ha of inundation area. Building data is obtained by digitizing aerial photographs taken in November 2021. The calculation of potential affected buildings is carried out by overlaying the tsunami inundation data with the existing building data in the study area. Meanwhile, the population data used is obtained from the local government in 2021. To obtain the number of the affected population, population distribution is first carried out in each class of land cover, overlaid with the tsunami inundation data. The estimated number of buildings and population affected by scenario 1 and 2 in Pangandaran Village is 1,040 buildings along with 2,765 people, and 4,216 buildings with 11,209 people respectively. While in Pananjung Village, it is estimated a total of 149 buildings with 350 people affected, and 4,039 buildings with 9,493 people affected respectively. This indicate that scenario 2 impact is potentially 4 times greater than scenario 1 in Pangandaran village, and 27 times greater in Pananjung village, implying a different strategy of tsunami risk reduction should be taken to save more lives. The results of this study can be used as a basis for policymaking by the government in carrying out a more effective tsunami disaster mitigation efforts in Pangandaran and Pananjung Villages. This study also calls for reevaluation of coastal villages tsunami risk based on each plausible scenario.


2019 ◽  
Vol 76 ◽  
pp. 03010 ◽  
Author(s):  
Muh Aris Marfai ◽  
Sunarto ◽  
Nurul Khakim ◽  
Hendy Fatchurohman ◽  
Ahmad Cahyadi ◽  
...  

The southern coastal area of Java Island is one of the nine seismic gaps that prone to tsunamis. The entire coastline in one of the regencies, Gunungkidul, is exposed to the subduction zone in the Indian Ocean. Also, the growing tourism industries in the regency increase its vulnerability, which places most of its areas at high risk of tsunamis. This conditions are expected to increase the tsunami risk and loss potential alongside the coastal area. This research aims to model tsunami inundation and estimate the loss that caused by tsunami. Detailed DEM generated from UAV photogrammetry. Based on the model, several inundation scenario. Based on the model, the 4-m inundation did not affect a wide area. The modelling proves that the extent of tsunami-inundated areas is directly proportional to the wave height of tsunamis. The inundated area extend as the inundation scenario increase. Hilly karst topography prevent the water to inundate wider areas. The loss calculation shows that the material loss at the trading centre was relatively much higher than the other land uses because its included not only the value of the building but also the commodities and the strategic importance of their market.


2021 ◽  
Vol 328 ◽  
pp. 04024
Author(s):  
Mohammad Ridwan Lessy ◽  
Mesrawaty Sabar

This research aims to explore tsunami-prone areas in the Bacan and South Bacan districts of South Halmahera Regency. The findings of this research are planned to assist all stakeholders, particularly in developing disaster risk assessment sheets. To estimate the tsunami hazard map, the susceptibility of the elevation, slope, river distance, and coastal distance was collected. Overlaying thematic maps were used assisted by GIS software. The result shows that the low and very low tsunami vulnerability areas were safe from tsunami inundation predominate in the Eastern part and Northern part of the study area while the area designated as very vulnerable covered 157,10 hectares. These locations may have sustained the most damage from a tsunami catastrophe due to their proximity to the sea, low terrain and slope, and dense population. In consideration of the tsunami disasters in Aceh, we anticipate that tsunami risk maps will support in the initiation of humanitarian and development activities in North Maluku Province.


Author(s):  
Ignacio Sepulveda ◽  
Jennifer S. Haase ◽  
Philip L.-F. Liu ◽  
Mircea Grigoriu ◽  
Brook Tozer ◽  
...  

We describe the uncertainties of altimetry-predicted bathymetry models and then quantify the impact of this uncertainty in tsunami hazard assessments. The study consists of three stages. First, we study the statistics of errors of altimetry-predicted bathymetry models. Second, we employ these statistics to propose a random field model for errors anywhere. Third, we use bathymetry samples to conduct a Monte Carlo simulation and describe the tsunami response uncertainty. We found that bathymetry uncertainties have a greater impact in shallow areas. We also noted that tsunami leading waves are less affected by uncertainties.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/zzL_XWWAQ7o


2019 ◽  
Author(s):  
Andrea Cerase ◽  
Massimo Crescimbene ◽  
Federica La Longa ◽  
Alessandro Amato

Abstract. According to a deep-rooted conviction, the occurrence of a tsunami in the Mediterranean Sea would be very rare. However, in addition to the catastrophic event of Messina and Reggio Calabria (1908) and the saved danger for the tsunami occurred on Cycladic sea in 1956, 44 events are reported in the Mediterranean Sea between 1951 and 2003, and other smaller tsunamis occurred off Morocco, Aegean and Ionian seashores between 2017 and 2018. Such events, that are just a little part of the over 200 historically events reported for the Mediterranean (Maramai, Brizuela & Graziani, 2014) should remind geoscientists, civil protection officers, media and citizens that 1) tsunami hazard in the Mediterranean is not negligible, and 2) tsunamis come in all shapes and colours, and even a small event can result in serious damages and loss of lives and properties. Recently, a project funded by the European Commission (TSUMAPS-NEAM, Basili et al., 2018) has estimated the tsunami hazard due to seismic sources in the NEAM region (one of the four ICG coordinated by the UNESCO IOC) finding that a significant hazard is present in most coasts of the area, particularly in those of Greece and Italy. In such a scenario, where low probability and high uncertainty match with poor knowledge and familiarity with tsunami hazard, risk mitigation strategies and risk communicators should avoid undue assumptions about public’s supposed attitudes and preparedness, as these may results in serious consequences for the exposed population, geoscientists, and civil protection officers. Hence, scientists must carefully shape their messages and rely on well-researched principled practices rather than on good intuitions (Bostrom, & Löfstedt, 2003). For these reasons, the Centro Allerta Tsunami of the Istituto Nazionale di Geofisica e Vulcanologia (hereinafter CAT-INGV) promoted a survey to investigate tsunami’s risk perception in two pilot regions of Southern Italy, Calabria and Apulia, providing a stratified sample of 1021 interviewees representing about 3.2mln people living in 183 coastal municipalities of two regions subjected (along with Sicily) to relatively high probability to be hit by a tsunami. Results show that people’s perception and understanding of tsunami are affected by media accounts of large tsunamis of 2004 (Sumatra) and 2011 (Tohoku, North East Japan): television emerged as the most relevant source of knowledge for almost 90 % of the sample, and the influence of media also results in the way tsunami risk is characterized. Risk perception appears to be low: for almost half of the sample the occurrence of a tsunami in the Mediterranean sea is considered quite unlikely. Furthermore, the survey’s results show that the word tsunami occupies a different semantic space with respect to the Italian traditional headword maremoto, with differences among sample strata. In other words, the same physical phenomenon would be understood in two different ways by younger, educated people and elders with low education level. Also belonging to different coastal areas appears to have a significant influence on the way tsunami hazard is conceived, having a stronger effect on risk characterization, for instance the interviewees of Tyrrhenian Calabria are more likely to associate tsunami risk to volcanoes with respect to other considered coastlines. The results of this study provide a relevant account of the issues at a stake, also entailing important implication both for risk communication and mitigation policies.


2012 ◽  
Vol 12 (1) ◽  
pp. 151-163 ◽  
Author(s):  
A. Grezio ◽  
P. Gasparini ◽  
W. Marzocchi ◽  
A. Patera ◽  
S. Tinti

Abstract. We present a first detailed tsunami risk assessment for the city of Messina where one of the most destructive tsunami inundations of the last centuries occurred in 1908. In the tsunami hazard evaluation, probabilities are calculated through a new general modular Bayesian tool for Probability Tsunami Hazard Assessment. The estimation of losses of persons and buildings takes into account data collected directly or supplied by: (i) the Italian National Institute of Statistics that provides information on the population, on buildings and on many relevant social aspects; (ii) the Italian National Territory Agency that provides updated economic values of the buildings on the basis of their typology (residential, commercial, industrial) and location (streets); and (iii) the Train and Port Authorities. For human beings, a factor of time exposition is introduced and calculated in terms of hours per day in different places (private and public) and in terms of seasons, considering that some factors like the number of tourists can vary by one order of magnitude from January to August. Since the tsunami risk is a function of the run-up levels along the coast, a variable tsunami risk zone is defined as the area along the Messina coast where tsunami inundations may occur.


2020 ◽  
Vol 8 ◽  
Author(s):  
Steven J. Gibbons ◽  
Stefano Lorito ◽  
Jorge Macías ◽  
Finn Løvholt ◽  
Jacopo Selva ◽  
...  

Probabilistic Tsunami Hazard Analysis (PTHA) quantifies the probability of exceeding a specified inundation intensity at a given location within a given time interval. PTHA provides scientific guidance for tsunami risk analysis and risk management, including coastal planning and early warning. Explicit computation of site-specific PTHA, with an adequate discretization of source scenarios combined with high-resolution numerical inundation modelling, has been out of reach with existing models and computing capabilities, with tens to hundreds of thousands of moderately intensive numerical simulations being required for exhaustive uncertainty quantification. In recent years, more efficient GPU-based High-Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have now made local long-term hazard assessment feasible. A workflow has been developed with three main stages: 1) Site-specific source selection and discretization, 2) Efficient numerical inundation simulation for each scenario using the GPU-based Tsunami-HySEA numerical tsunami propagation and inundation model using a system of nested topo-bathymetric grids, and 3) Hazard aggregation. We apply this site-specific PTHA workflow here to Catania, Sicily, for tsunamigenic earthquake sources in the Mediterranean. We illustrate the workflows of the PTHA as implemented for High-Performance Computing applications, including preliminary simulations carried out on intermediate scale GPU clusters. We show how the local hazard analysis conducted here produces a more fine-grained assessment than is possible with a regional assessment. However, the new local PTHA indicates somewhat lower probabilities of exceedance for higher maximum inundation heights than the available regional PTHA. The local hazard analysis takes into account small-scale tsunami inundation features and non-linearity which the regional-scale assessment does not incorporate. However, the deterministic inundation simulations neglect some uncertainties stemming from the simplified source treatment and tsunami modelling that are embedded in the regional stochastic approach to inundation height estimation. Further research is needed to quantify the uncertainty associated with numerical inundation modelling and to properly propagate it onto the hazard results, to fully exploit the potential of site-specific hazard assessment based on massive simulations.


Sign in / Sign up

Export Citation Format

Share Document