scholarly journals How well are hazards associated with derechos reproduced in regional climate simulations?

2021 ◽  
Author(s):  
Tristan J. Shepherd ◽  
Frederick L. Letson ◽  
Rebecca J. Barthelmie ◽  
Sara C. Pryor

Abstract. An 11-member ensemble of convection-permitting regional simulations of the fast-moving and destructive derecho of June 29 – 30, 2012 that impacted the northeastern urban corridor of the US is presented. This event generated 1100 reports of damaging winds, significant wind gusts over an extensive area of up to 500,000 km2, caused several fatalities and resulted in widespread loss of electrical power. Extreme events such as this are increasingly being used within pseudo-global warming experiments that seek to examine the sensitivity of historical, societally-important events to global climate non-stationarity and how they may evolve as a result of changing thermodynamic and dynamic context. As such it is important to examine the fidelity with which such events are described in hindcast experiments. The regional simulations presented herein are performed using the Weather Research and Forecasting (WRF) model. The resulting ensemble is used to explore simulation fidelity relative to observations for wind gust magnitudes, spatial scales of convection (as manifest in high composite reflectivity), and both rainfall and hail production as a function of model configuration (microphysics parameterization, lateral boundary conditions (LBC), start date, and use of nudging). We also examine the degree to which each ensemble member differs with respect to key mesoscale drivers of convective systems (e.g. convective available potential energy and vertical wind shear) and critical manifestations of deep convection; e.g. vertical velocities, cold pool generation, and how those properties relate to correct characterization of the associated atmospheric hazards (wind gusts and hail). Here, we show that the use of a double-moment, 7-class scheme with number concentrations for all species (including hail and graupel) results in the greatest fidelity of model simulated wind gusts and convective structure against the observations of this event. We further show very high sensitivity to the LBC employed and specifically that simulation fidelity is higher for simulations nested within ERA-Interim than ERA5.

2014 ◽  
Vol 27 (10) ◽  
pp. 3848-3868 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorm environments in Australia was explored using two global climate models: Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6), and the Cubic-Conformal Atmospheric Model (CCAM). These models have previously been evaluated and found to be capable of reproducing a useful climatology for the twentieth-century period (1980–2000). Analyzing the changes between the historical period and high warming climate scenarios for the period 2079–99 has allowed estimation of the potential convective future for the continent. Based on these simulations, significant increases to the frequency of severe thunderstorm environments will likely occur for northern and eastern Australia in a warmed climate. This change is a response to increasing convective available potential energy from higher continental moisture, particularly in proximity to warm sea surface temperatures. Despite decreases to the frequency of environments with high vertical wind shear, it appears unlikely that this will offset increases to thermodynamic energy. The change is most pronounced during the peak of the convective season, increasing its length and the frequency of severe thunderstorm environments therein, particularly over the eastern parts of the continent. The implications of this potential increase are significant, with the overall frequency of potential severe thunderstorm days per year likely to rise over the major population centers of the east coast by 14% for Brisbane, 22% for Melbourne, and 30% for Sydney. The limitations of this approach are then discussed in the context of ways to increase the confidence of predictions of future severe convection.


2008 ◽  
Vol 136 (11) ◽  
pp. 4355-4372 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract Helicity was calculated in Hurricane Bonnie (1998) using tropospheric-deep dropsonde soundings from the NASA Convection and Moisture Experiment. Large helicity existed downshear of the storm center with respect to the ambient vertical wind shear. It was associated with veering, semicircular hodographs created by strong, vortex-scale, radial-vertical flow induced by the shear. The most extreme values of helicity, among the largest ever reported in the literature, occurred in the vicinity of deep convective cells in the downshear-left quadrant. These cells reached as high as 17.5 km and displayed the temporal and spatial scales of supercells. Convective available potential energy (CAPE) averaged 861 J kg−1 downshear, but only about one-third as large upshear. The soundings nearest the deep cells were evaluated using two empirical supercell parameters that make use of CAPE, helicity, and/or shear. These parameters supported the possible existence of supercells as a consequence of the exceptional helicity combined with moderate but sufficient CAPE. Ambient vertical wind shear exceeded 12 m s−1 for 30 h, yet the hurricane maintained 50 m s−1 maximum winds. It is hypothesized that the long-lived convective cells enabled the storm to resist the negative impact of the shear. Supercells in large-helicity, curved-hodograph environments appear to provide a useful conceptual model for intense convection in the hurricane core. Helicity calculations might also give some insight into the behavior of vortical hot towers, which share some characteristics with supercells.


Időjárás ◽  
2021 ◽  
Vol 125 (1) ◽  
pp. 1-37
Author(s):  
Zoltán Sipos ◽  
André Simon ◽  
Kálmán Csirmaz ◽  
Tünde Lemler ◽  
Robert-Daniel Manta ◽  
...  

The present study examines the origin and environmental conditions of the severe convective windstorm on September 17, 2017, which affected several countries in the central and southeastern Europe, above all Serbia and Romania. The large area of the damage swath (at least 500 km long) and high wind gusts (up to 40 m/s) would classify this event as a derecho or at least as a storm very similar to derechos (with respect to newer definition proposals). Small-scale bow echoes were found in areas with highest reported wind gusts, and some thunderstorms within the storm-producing convective system were probably supercells. The existence of high wind shear and storm rotation could be also related to the significant rightward deflection of the system with respect to the mean wind and propagation of other thunderstorms and systems observed on that day. In contrary to many other known derecho events, this storm propagated toward a very dry airmass exhibiting only low or moderate convective available potential energy (CAPE) values. This is shown by soundings, ECMWF model outputs, and vertical profiles from the IASI L2 satellite sounder. Several convective parameters (e.g. CAPE, downdraft CAPE, derecho composite parameter, 0-3-km relative humidity, 0-6-km shear) were evaluated and compared with proximity soundings of other described European derechos or with the available climatology. The possibility of a balance between the cold pool-generated horizontal vorticity and the environmental shear is also discussed. It is concluded that identification of low-level humidity sources (with aid of storm-relative wind vectors or streamlines) can be important in forecasting of thunderstorm systems moving toward an airmass, which is seemingly too dry for development and maintenance of deep convection. It is also shown that due to low CAPE values, some composite parameters would not indicate favourable conditions for a long-lived convective system. The lack of radiosonde observations can be partially supplemented by data from the IASI L2 sounder, which profiles can be largely different from model forecasts, showing much drier air in the mid- and upper troposphere in this case. It is concluded that due to the absence of strong synoptic forcing and larger pressure gradient at surface, convective processes played major role in the windstorm development. The presence of high temperature lapse rates at low- and mid-levels, high wind shear and unusually dry pre-storm airmass could be considered as the most important signatures related to the storm severity.


2021 ◽  
Author(s):  
Piyush Garg ◽  
Stephen W. Nesbitt ◽  
Timothy J. Lang ◽  
George Priftis

<p>In the recent years, global kilometer-scale convection-permitting models have shown promising results in producing realistic convection and precipitation. In this study, a 2.5 km global Icosahedral Nonhydrostatic (ICON) model simulation ran for 40 days (06 UTC 01 Aug – 23 UTC 10 Aug 2016) from Dynamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) initiative was used to identify thermal cold pools (using virtual temperature) over tropical oceans. In addition to examining cold pool variability, variables such as vertical wind shear (0-600 hPa and 0-300 hPa), relative humidity, convective available potential energy (CAPE), column water vapor and surface fluxes corresponding to each cold pool were analyzed. Grid-point linear regression was applied to identify relationships between these variables and cold pool size and intensity. It was found out that there is a statistically significant regional variability in the relationships between cold pool properties and their environments across the global tropics, and cold pool size and intensity have quite different dependence on the various variables considered. Unsupervised machine learning algorithm was then applied to geospatial linear regression to identify coherent patterns explaining multi-modal feedback between cold pools and their mesoscale environments.</p><p>Previous studies have hypothesized that although accurate characterization of cold pool diurnal cycle is essential to resolve realistic deep convection in the current generation climate models, our lack of understanding of feedbacks between cold pools and convection leads to distorted diurnal cycle of precipitation. NASA’s RapidScat satellite was in a non-sun-synchronous orbit for 2014-2016 and thus was able to resolve diurnal cycle. Garg et al. (2020) gradient feature technique was applied on RapidScat’s winds to identify cold pools and observe their diurnal cycle of number, size, precipitation and associated convective system properties. Once an observed perspective of cold pool diurnal cycle is obtained, Fourier analysis was used on all the cold pool-associated variables in ICON simulation to obtain the diurnal phase and amplitude. The simulated diurnal cycle of cold pool number, size, precipitation, and other variables were observed to be similar as RapidScat. In this way, this study creates a holistic overview of cold pool-convection-precipitation-storm environment relationships using high-resolution CRM from DYAMOND and satellite observations.</p>


2015 ◽  
Vol 143 (4) ◽  
pp. 1086-1103 ◽  
Author(s):  
Bradford S. Barrett ◽  
Brittany N. Henley

Abstract Climatologies have been developed to highlight variability of the frequency and intensity of hail in the United States. However, the intraseasonal variability of hail, including why one week might be active while the following inactive despite both having similar climatological probabilities, has not yet been explored. This paper presents relationships between spring-season (April–June) hail days and the leading mode of atmospheric intraseasonal variability, the Madden–Julian oscillation (MJO). It extends recent work on intraseasonal tornado variability to smaller spatial scales. In April, May, and June, statistically significant variability in hail days was found for different Real-time Multivariate MJO (RMM) phases of the MJO. For April, the strongest correlations between hail-day anomalies and anomalies of the product of convective available potential energy (CAPE) and 0–6-km vertical wind shear were found in RMM phase 5, with above-normal likelihood of a hail day found in the south-central United States. For May, the strongest correlations were found in RMM phase 3, with below-normal likelihood of a hail day located over the north-central United States. For June, the strongest correlations were found in phase 8, with above-normal likelihood of hail in west Texas and below-normal likelihood of hail over much of the middle of the United States. In all phases, 300-hPa height anomalies in the United States formed part of a global wave train similar to MJO patterns in both modeling and observational studies.


Author(s):  
Yu-Tai Pan ◽  
Ming-Jen Yang

AbstractOn 19 April 2019, a mature squall-line mesoscale convective system (MCS) with the characteristics of a leading convective line and trailing stratiform landed on Taiwan, resulting in strong gust wind and heavy rainfall. This squall-line MCS became asymmetric after landfall on Taiwan. Two sets of idealized numerical simulations (mountain heights and low-level vertical wind shear) using the Weather Research and Forecasting (WRF) model were conducted to examine the impacts of realistic Taiwan topography on a squall-line MCS. Results showed numerous similarities between the idealized simulations and real-case observations. The low-level Froude number which considered the terrain height (Fmt) was calculated to examine the blocking effect of the Taiwan terrain, and the cold pool (determined by − 1.5 K isotherm) was found to be completely blocked by the 500-m height contour. The northeast-southwest orientation of the Snow Mountain Range (SMR), and the north–south orientation of the Central Mountain Range (CMR) led to the upwind side asymmetry. On the other hand, the lee-side asymmetry was associated with different intensities and occurrence locations of the hydraulic jump between the SMR and southern CMR, and the cold-pool Froude number (Fcp) indicated the flow-regime transition from subcritical to supercritical.


2015 ◽  
Vol 72 (5) ◽  
pp. 1987-2010 ◽  
Author(s):  
John M. Peters ◽  
Russ S. Schumacher

Abstract This study details the development and use of an idealized modeling framework to simulate a quasi-stationary heavy-rain-producing mesoscale convective system (MCS). A 36-h composite progression of atmospheric fields computed from 26 observed warm-season heavy-rain-producing training line/adjoining stratiform (TL/AS) MCSs was used as initial and lateral boundary conditions for a numerical simulation of this MCS archetype. A realistic TL/AS MCS initiated and evolved within a simulated mesoscale environment that featured a low-level jet terminus, maximized low-level warm-air advection, and an elevated maximum in convective available potential energy. The first stage of MCS evolution featured an eastward-moving trailing-stratiform-type MCS that generated a surface cold pool. The initial system was followed by rearward off-boundary development, where a new line of convective cells simultaneously redeveloped north of the surface cold pool boundary. Backbuilding persisted on the western end of the new line, with individual convective cells training over a fixed geographic region. The final stage was characterized by a deepening and southward surge of the cold pool, accompanied by the weakening and slow southward movement of the training line. The low-level vertical wind shear profile favored kinematic lifting along the southeastern cold pool flank over the southwestern flank, potentially explaining why convection propagated with (did not propagate with) the former (latter) outflow boundaries. The morphological features of the simulated MCS are common among observed cases and may, therefore, be generalizable. These results suggest that they are emergent from fundamental features of the large-scale environment, such as persistent regional low-level lifting, and with the vertical environmental wind profile characteristic to TL/AS systems.


2013 ◽  
Vol 28 (3) ◽  
pp. 863-892 ◽  
Author(s):  
Morris L. Weisman ◽  
Clark Evans ◽  
Lance Bosart

Abstract Herein, an analysis of a 3-km explicit convective simulation of an unusually intense bow echo and associated mesoscale vortex that were responsible for producing an extensive swath of high winds across Kansas, southern Missouri, and southern Illinois on 8 May 2009 is presented. The simulation was able to reproduce many of the key attributes of the observed system, including an intense [~100 kt (51.4 m s−1) at 850 hPa], 10-km-deep, 100-km-wide warm-core mesovortex and associated surface mesolow associated with a tropical storm–like reflectivity eye. A detailed analysis suggests that the simulated convection develops north of a weak east–west lower-tropospheric baroclinic zone, at the nose of an intensifying low-level jet. The system organizes into a north–south-oriented bow echo as it moves eastward along the preexisting baroclinic zone in an environment of large convective available potential energy (CAPE) and strong tropospheric vertical wind shear. Once the system moves east of the low-level jet and into an environment of weaker CAPE and weaker vertical wind shear, it begins an occlusion-like phase, producing a pronounced comma-shaped reflectivity echo with an intense warm-core mesovortex at the head of the comma. During this phase, a deep strip of cyclonic vertical vorticity located on the backside of the bow echo consolidates into a single vortex core. A notable weakening of the low-level convectively generated cold pool also occurs during this phase, perhaps drawing parallels to theories of tropical cyclogenesis wherein cold convective downdrafts must be substantially mitigated for subsequent system intensification.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 689
Author(s):  
Rudolf Brázdil ◽  
Kateřina Chromá ◽  
Tomáš Púčik ◽  
Zbyněk Černoch ◽  
Petr Dobrovolný ◽  
...  

In the Czech Republic, tornadoes may reach an intensity of F2 and F3 on the Fujita scale, causing “considerable” to “severe” damage. Documentary evidence is sufficient to allow the creation of a chronology of such events, from the earliest recorded occurrence in 1119 CE (Common Era) to 2019, including a total of 108 proven or probable significant tornadoes on 90 separate days. Since only 11 significant tornadoes were documented before 1800, this basic analysis centers around the 1811–2019 period, during which 97 tornadoes were recorded. Their frequency of occurrence was at its highest in the 1921–1930, 1931–1940, and 2001–2010 decades. In terms of annual variations, they took place most frequently in July, June, and August (in order of frequency), while daily variation favored the afternoon and early evening hours. Conservative estimates of human casualties mention 8 fatalities and over 95 people injured. The most frequent types of damage were related to buildings, individual trees, and forests. Tornadoes of F2–F3 intensity were particularly associated with synoptic types characterized by airflow from the western quadrant together with troughs of low pressure extending or advancing over central Europe. Based on parameters calculated from the ERA-5 re-analysis for the period of 1979–2018, most of these tornadoes occurred over a wide range of Convective Available Potential Energy (CAPE) values and moderate-to-strong vertical wind shear. The discussion herein also addresses uncertainties in tornado selection from documentary data, the broader context of Czech significant tornadoes, and the environmental conditions surrounding their origins.


Sign in / Sign up

Export Citation Format

Share Document