scholarly journals Evolution of surface deformation related to salt-extraction-caused sinkholes in Solotvyno (Ukraine) revealed by Sentinel-1 radar interferometry

2021 ◽  
Vol 21 (3) ◽  
pp. 977-993
Author(s):  
Eszter Szűcs ◽  
Sándor Gönczy ◽  
István Bozsó ◽  
László Bányai ◽  
Alexandru Szakacs ◽  
...  

Abstract. Rock salt has remarkable mechanical properties and high economic importance; however, the strength of salt compared to other rocks makes it a rather vulnerable material. Human activities could lead to acceleration of the dissolution of soluble rock salt and collapse of subsurface caverns. Although sinkhole development can be considered a local geological disaster regarding the characteristic size of surface depressions, the deformations can result in catastrophic events. In this study we report the spatiotemporal evolution of surface deformation in the Solotvyno salt mine area in Ukraine based on Sentinel-1 interferometric synthetic aperture radar measurements. Although the mining operations were finished in 2010, several sinkholes have been opened up since then. Our results show that despite the enormous risk management efforts, the sinkholes continue to expand with a maximum line-of-sight deformation rate of 5 cm/yr. The deformation time series show a rather linear feature, and unfortunately no slowdown of the processes can be recognized based on the investigated 4.5-year-long data set. We utilized both ascending and descending satellite passes to discriminate the horizontal and vertical deformations, and our results revealed that vertical deformation is much more pronounced in the area. Analytical source modeling confirmed that the complex deformation pattern observed by Sentinel-1 radar interferometry has a direct connection to the former mining activity and is confined to the mining territory. With the 6 d repetition time of Sentinel-1 observations, the evolution of surface changes can be detected in quasi real time, which can facilitate disaster response and recovery.

2020 ◽  
Author(s):  
Eszter Szűcs ◽  
Sándor Gönczy ◽  
István Bozsó ◽  
László Bányai ◽  
Alexandru Szakacs ◽  
...  

Abstract. Rocksalt has remarkable mechanical properties and a high economic importance, however, this strength of salt compared to other rocks makes it a rather vulnerable material. Human activities could lead to acceleration of the dissolution of soluble rocksalt and collapse of subsurface caverns. Although sinkhole development can be considered local geological disaster regarding the characteristic size of surface depressions the deformations can result in catastrophic events. In this study we report the spatiotemporal evolution of surface deformation in Solotvyno salt mine area in Ukraine based on Sentinel-1 interferometric synthetic aperture radar measurements. Although the mining operations were finished in 2010 several sinkholes have been opened up since then. Our results show that even though the enormous risk managing efforts the sinkholes continue to expand with a maximum line-of-sight deformation rate of 5 cm/yr. The deformation time series show a rather linear feature and unfortunately no slowdown of the processes can be recognized based on the investigated 4.5 year-long data set. We utilized both ascending and descending satellite passes to discriminate the horizontal and vertical deformations and our results revealed that vertical deformation is much more dominant in the area. With the 6-day repetition time of Sentinel-1 observations the evolution of surface changes can be detected in quasi real-time which can facilitate disaster response and recovery.


2020 ◽  
Author(s):  
Karolina Owczarz ◽  
Anna Kopeć ◽  
Dariusz Głąbicki

<p>The level of intensity of induced seismic phenomena occurring in areas of mining activity is very diverse. Induced shocks may be directly related to the exploitation carried out or to mining and tectonic factors. In the case of impact on the surface, two types of mining tremors are distinguished: energetically weak shocks, not causing surface deformation, and shocks exceeding a certain energy level, which cause terrain deformations. Surface displacements are the most common form of the effects of underground mining operations, including induced seismicity. Geological research uses Sentinel-1 imagery to determine the geometry of surface displacements that were caused by induced shocks by satellite radar interferometry. In this research four induced shocks with magnitude M>4.0 was used, which occurred in the Legnica-Glogow Copper District in the Rudna mine. This area is one of the most seismically active places in Poland due to the underground exploitation of copper ore. For calculations, the differential satellite radar interferometry (DInSAR) method was used. The DInSAR technique allowed the determination of surface displacement towards the Line of Sight (LOS) between two images acquired at different times (before and after induced shock) with millimeter accuracy. In the presented research calculations were carried out separately for observations acquired in descending and ascending orbits. The Sentinel-1 satellites are a constellation of two radar satellites that observe the surface of lands and oceans at a time interval of 6 days. Therefore, 6 days, 12 days, 18 days and 24 days were assumed as the time intervals between the images. Vertical displacements were calculated based on the generated LOS displacement maps. In addition, charts of subsidence in the N-S and W-E directions were prepared, 3D models of subsidence were made, and deformation geometry was analyzed for individual shocks. As a result of the research, the spatial extent of deformation in the horizontal surface was determined: N-S and W-E, which in both directions was over 2 km. However, surface displacements caused by induced shocks reached values up to 10 cm.</p>


2021 ◽  
Vol 13 (20) ◽  
pp. 4138
Author(s):  
Yongzhe Wang ◽  
Kun Chen ◽  
Ying Shi ◽  
Xu Zhang ◽  
Shi Chen ◽  
...  

On 21 May 2021, an Mw 6.1 earthquake, causing considerable seismic damage, occurred in Yangbi County, Yunnan Province of China. To better understand the surface deformation pattern, source characteristics, seismic effect on nearby faults, and strong ground motion, we processed the ascending and descending SAR images using the interferometric synthetic aperture radar (InSAR) technique to capture the radar line-of-sight (LOS) directional and 2.5-dimensional deformation. The source model was inverted from the LOS deformation observations. We further analyzed the Coulomb failure stress (CFS) transfer and peak ground acceleration (PGA) simulation based on the preferred source model. The results suggest that the 2021 Yangbi earthquake was dextral faulting with the maximum slip of 0.9 m on an unknown blind shallow fault, and the total geodetic moment was 1.4 × 1018 Nm (Mw 6.06). Comprehensive analysis of the CFS transfer and geological tectonics suggests that the Dian–Xibei pull-apart basin is still suffering high seismic hazards. The PGA result demonstrates that the seismic intensity of this event reached up to VIII. The entire process from InSAR deformation to source modeling and strong ground motion simulation suggests that the InSAR technique will play an important role in the assessment of earthquake disasters in the case of the shortening of the SAR imaging interval.


2021 ◽  
Vol 225 (3) ◽  
pp. 1799-1811
Author(s):  
Yingfeng Zhang ◽  
Xinjian Shan ◽  
Wenyu Gong ◽  
Guohong Zhang

SUMMARY The challenge of ruling out potential rupture nodal planes with opposite dip orientations during interferometric synthetic aperture radar (InSAR)-based kinematic inversions has been widely reported. Typically, slip on two or more different fault planes can match the surface deformation measurements equally well. The ambiguous choice of the nodal plane for the InSAR-based models was thought to be caused by InSAR's 1-D measurement and polar orbiting direction, leading to its poor sensitivity to north–south crustal motion. Through synthetic experiments and simulations, this paper quantitatively demonstrates the main reason of the ambiguous InSAR-based models, which confuse researchers in the small-to-moderate thrust earthquake cases investigation. We propose the inherent 1-D measurement is not the principle cause of the fault plane ambiguity, since models derived from the same InSAR data predict similar, but not identical, 3-D deformation patterns. They key to differentiating between these different models is to be able to resolve the small asymmetry in the surface deformation pattern, which may be smaller in amplitude than the typical noise levels in InSAR measurements. We investigate the fault geometry resolvability when using InSAR data with different noise levels through ‘R’ value. We find that the resolvability does not only rely on the InSAR noise, but also on the fault geometry itself (i.e. depth, dips angle and strike). Our result shows that it is impossible to uniquely determine the dip orientation of thrust earthquakes with Mw < 6.0 and depth > 5.0 km with InSAR data at a noise level that is typical for mountain belts. This inference is independent from the specific data set (i.e. interferogram or time-series) and allows one to assess if one can expect to be able to resolve the correct fault plane at all.


2021 ◽  
Vol 13 (4) ◽  
pp. 785
Author(s):  
Sen Zhang ◽  
Qigang Jiang ◽  
Chao Shi ◽  
Xitong Xu ◽  
Yundi Gong ◽  
...  

Kuh-e-Namak (Dashti) namakier is one of the most active salt diapirs along the Zagros fold–thrust belt in Iran. Its surface deformation should be measured to estimate its long-term kinematics. Ten Sentinel-2 optical images acquired between October 2016 and December 2019 were processed by using Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) method. Forty-seven Sentinel-1 ascending Synthetic Aperture Radar (SAR) images acquired between April 2017 and December 2019 were processed by using Small Baseline Subset Synthetic Aperture Radar Interferometry (SBAS-InSAR) method. The deformation of Kuh-e-Namak (Dashti) namakier was measured using both methods. Then, meteorological data were utilized to explore the relationship between the kinematics of the namakier and weather conditions and differences in macrodeformation behavior of various rock salt types. The advantages and disadvantages of COSI-Corr and SBAS-InSAR methods in measuring the deformation of the namakier were compared. The results show that: (1) The flank subsides in the dry season and uplifts in the rainy season, whereas the dome subsides in the rainy season and uplifts in the dry season. Under extreme rainfall conditions, the namakier experiences permanent plastic deformation. (2) The “dirty” rock salt of the namakier is more prone to flow than the “clean” rock salt in terms of macrodeformation behavior. (3) In the exploration of the kinematics of the namakier via the two methods, COSI-Corr is superior to SBAS-InSAR on a spatial scale, but the latter is superior to the former on a time scale.


2020 ◽  
Vol 10 (1) ◽  
pp. 136-144
Author(s):  
P.K. Gautam ◽  
S. Rajesh ◽  
N. Kumar ◽  
C.P. Dabral

Abstract We investigate the surface deformation pattern of GPS station at MPGO Ghuttu (GHUT) to find out the cause of anomalous behavior in the continuous GPS time series. Seven years (2007-2013) of GPS data has been analyzed using GAMIT/GLOBK software and generated the daily position time series. The horizontal translational motion at GHUT is 43.7 ± 1 mm/yr at an angle of 41°± 3° towards NE, while for the IGS station at LHAZ, the motion is 49.4 ±1 mm/yr at 18 ± 2.5° towards NEE. The estimated velocity at GHUT station with respect to IISC is 12 ± 1 mm/yr towards SW. Besides, we have also examined anomalous changes in the time series of GHUT before, after and during the occurrences of local earthquakes by considering the empirical strain radius; such that, a possible relationship between the strain radius and the occurrences of earthquakes have been explored. We considered seven local earthquakes on the basis of Dobrovolsky strain radius condition having magnitude from 4.5 to 5.7, which occurred from 2007 to 2011. Results show irrespective of the station strain radius, pre-seismic surface deformational anomalies are observed roughly 70 to 80 days before the occurrence of a Moderate or higher magnitude events. This has been observed for the cases of those events originated from the Uttarakashi and the Chamoli seismic zones in the Garhwal and Kumaun Himalaya. Occurrences of short (< 100 days) and long (two years) inter-seismic events in the Garhwal region plausibly regulating and diffusing the regional strain accumulation.


1983 ◽  
Vol 27 (02) ◽  
pp. 121-130
Author(s):  
T. Miloh

The problem of self-propulsion of an elongated deformable body moving in an infinite medium of inviscid fluid is considered in some detail. A prolate spheroid is chosen as a model shape, and a particular deformation pattern which maximizes the Froude efficiency is sought. The Froude efficiency in this context is defined by the ratio of the kinetic energy of the body to the total kinetic energy of the system comprising the body and the fluid. It is demonstrated that a body can propel itself from rest in a persistent manner even for a periodic surface deformation with zero mean which preserves both the volume and the location of its centroid. Under these constraints the induced forward velocity of the body is of 0(ε2) where ε is the amplitude of the deformation velocity. It is also demonstrated that for a persistent self-propulsion to exist the body should develop a large degree of skewness, resulting from the interaction between the two deformation components—one with fore-and-aft symmetry and one without. It is also essential that the symmetric and asymmetric deformation components should be out of phase.


2001 ◽  
Vol 7 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Andrew K. Gabriel ◽  
Richard M. Goldstein ◽  
Ronald G. Blom

Author(s):  
Edmund M. Ricci ◽  
Ernesto A. Pretto ◽  
Knut Ole Sundnes

A ‘mixed-methods’ research design, based upon the categories contained in a disaster response logic model, is suggested as the best approach to capture the complexities of the medical and public health disaster response experience. A mixed-methods design allows the evaluation team to collect and combine data from direct observation, medical records, interviews with victims, health professionals, family and friends of victims, public safety officials, other government and non-governmental officials and from public documents. Validation in a mixed-method design is based upon the concept of triangulation. The term triangulation is used in behavioral research to describe the process of obtaining data from three or more different sources and then comparing the findings to assess consistency across sources. In this design, both qualitative and quantitative data are collected and then merged during the analysis phase. Each data set is used to validate and enhance the other in order to improve the validity of the conclusions reached and the recommendations that follow. However, not all data need be combined. The mixed-method design allows for the analysis of certain types of data separately and then applied to the appropriate research question because there may be no appropriate comparative data.


2018 ◽  
Vol 15 (8) ◽  
pp. 2525-2549 ◽  
Author(s):  
Anne Peukert ◽  
Timm Schoening ◽  
Evangelos Alevizos ◽  
Kevin Köser ◽  
Tom Kwasnitschka ◽  
...  

Abstract. In this study, ship- and autonomous underwater vehicle (AUV)-based multibeam data from the German ferromanganese-nodule (Mn-nodule) license area in the Clarion–Clipperton Zone (CCZ; eastern Pacific) are linked to ground-truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high-resolution AUV bathymetry, this revealed a correlation of small-scale terrain variations (< 5 m horizontally, < 1 m vertically) with nodule coverage. In the presented data set, increased nodule coverage could be correlated with slopes > 1.8∘ and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule coverage and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of resettled sediment following a disturbance and sediment cloud generation during a sampling deployment of an epibenthic sledge. Data from before and after the “disturbance” allow a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 h after the disturbance. The visually detectable impact was spatially limited to a maximum of 100 m distance from the disturbance track, downstream of the bottom water current. A correlation with high-resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor (<1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining mineable areas. At the same time, it shows the importance of high-resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining operations.


Sign in / Sign up

Export Citation Format

Share Document