scholarly journals A case study carried out with two different NWP systems

2006 ◽  
Vol 6 (5) ◽  
pp. 755-760
Author(s):  
P. Kållberg ◽  
A. Montani

Abstract. A model intercomparison between two atmospheric models, the non–hydrostatic Lokal Modell (LM) and the hydrostatic HIgh Resolution Limited Area Model (HIRLAM) is carried out for a one-week period, including a case of cyclogeneis leading to heavy precipitation over Northern Italy. The two models, very different in terms of data-assimilation and numerics, provide different results in terms of forecasts of surface fields. Opposite diurnal biases for the two models are found in terms of screen level temperatures. HIRLAM wind speed forecasts are too strong, while LM precipitation forecasts have larger extremes. The intercomparison exercise identifies some systematic differences in the weather products generated by the two systems and sheds some light on the biases of the two numerical weather prediction systems.

Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 571-607
Author(s):  
André Simon ◽  
Martin Belluš ◽  
Katarína Čatlošová ◽  
Mária Derková ◽  
Martin Dian ◽  
...  

The paper presented is dedicated to the evaluation of the influence of various improvements to the numerical weather prediction (NWP) systems exploited at the Slovak Hydrometeorological Institute (SHMÚ). The impact was illustrated in a case study with multicell thunderstorms and the results were confronted with the reference analyses from the INCA nowcasting system, regional radar reflectivity data, and METEOSAT satellite imagery. The convective cells evolution was diagnosed in non-hydrostatic dynamics experiments to study weak mesoscale vortices and updrafts. The growth of simulated clouds and evolution of the temperature at their top were compared with the brightness temperature analyzed from satellite imagery. The results obtained indicated the potential for modeling and diagnostics of small-scale structures within the convective cloudiness, which could be related to severe weather. Furthermore, the non-hydrostatic dynamics experiments related to the stability and performance improvement of the time scheme led to the formulation of a new approach to linear operator definition for semi-implicit scheme (in text referred as NHHY). We demonstrate that the execution efficiency has improved by more than 20%. The exploitation of several high resolution measurement types in data assimilation contributed to more precise position of predicted patterns and precipitation representation in the case study. The non-hydrostatic dynamics provided more detailed structures. On the other hand, the potential of a single deterministic forecast of prefrontal heavy precipitation was not as high as provided by the ensemble system. The prediction of a regional ensemble system A-LAEF (ALARO Limited Area Ensemble Forecast) enhanced the localization of precipitation patterns. Though, this was rather due to the simulation of uncertainty in the initial conditions and also because of the stochastic perturbation of physics tendencies. The various physical parameterization setups of A-LAEF members did not exhibit a systematic effect on precipitation forecast in the evaluated case. Moreover, the ensemble system allowed an estimation of uncertainty in a rapidly developing severe weather case, which was high even at very short range.


2015 ◽  
Vol 4 (2) ◽  
pp. 206
Author(s):  
Siham Sbii ◽  
Mimoun Zazoui ◽  
Noureddine Semane

<p>Satellites are uniquely capable of providing uniform data coverage globally. Motivated by such capability, this study builds on a previously described methodology that generates numerical weather prediction initial conditions from satellite total column ozone data. The methodology is based on two principal steps. Firstly, the studied linear regression between vertical (100hPa-500hPa) Mean Potential Vorticity (MPV) and MetOp/GOME2 total ozone data (O3) generates MPV pseudo-observations. Secondly, the 3D variational (3D-Var) assimilation method is designed to take into account MPV pseudo-observations in addition to conventional observations.</p><p>After a successful assimilation of MPV pseudo-observations using a 3D-Var approach within the Moroccan version of the ALADIN limited-area model, the present study aims to assess the dynamical behavior of the short-range forecast at upper levels during heavy precipitation events (HPEs). It is found that MPV assimilation offers the possibility to internally monitor the model upper-level dynamics in addition to the use of Water Vapor Satellite images.</p>


2017 ◽  
Author(s):  
Aurore Voldoire ◽  
Bertrand Decharme ◽  
Joris Pianezze ◽  
Cindy Lebeaupin Brossier ◽  
Florence Sevault ◽  
...  

Abstract. This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution Numerical Weather Prediction systems or very fine scale systems dedicated to process studies. The objective of this development is to build and share a common structure for all these applications for the atmosphere-surface coupling, between atmospheric models and ocean, ice, hydrology, and wave models. The numerical and physical principles of the SURFEX interface between the different component models are described, and the different coupled systems into which the SURFEX OASIS3-MCT-based coupling interface is already applied are presented.


2013 ◽  
Vol 1 (6) ◽  
pp. 7497-7515 ◽  
Author(s):  
F. Silvestro ◽  
N. Rebora ◽  
G. Cummings

Abstract. The forecast of flash floods is sometimes impossible. In the last two decades, Numerical Weather Prediction Systems have become increasingly reliable with very relevant improvements in terms of quantitative precipitation forecasts. However, some types of events, those that are intense and localized in small areas, are still very difficult to predict. In many cases meteorological models fail to predict the volume of precipitable water at the large scale. Despite the application of modern probabilistic chains that uses precipitation downscaling algorithms in order to forecast the streamflow, some significant flood events remain unpredicted. This was also the case with an event which occurred on 8 and 9 June 2011 in the eastern part of the Liguria Region, Italy. This event affected in particular the Entella basin, which is quite a small watershed that flows into the Mediterranean Sea. The application of a hydrological nowcasting chain as a tool for predicting flash-floods in small and medium size basins with an anticipation time of a few hours (2–5) is here presented. This work investigated the "behaviour" of the chain in the cited event and how it could be exploited for operational purposes. The results in this particular case were encouraging.


2021 ◽  
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar ◽  
Peter Knippertz

Abstract. Heavy precipitation is one of the most devastating weather extremes in the western Mediterranean region. Our capacity to prevent negative impacts from such extreme events requires advancements in numerical weather prediction, data assimilation and new observation techniques. In this paper we investigate the impact of two state-of-the-art data sets with very high resolution, Global Positioning System-Zenith Total Delays (GPS-ZTD) with a 10 min temporal resolution and radiosondes with ~700 levels, on the representation of convective precipitation in nudging experiments. Specifically, we investigate whether the high temporal resolution, quality, and coverage of GPS-ZTDs can outweigh their lack of vertical information or if radiosonde profiles are more valuable despite their scarce coverage and low temporal resolution (24 h to 6 h). The study focuses on the Intensive Observation Period 6 (IOP6) of the Hydrological Cycle in the Mediterranean eXperiment (HyMeX; 24 September 2012). This event is selected due to its severity (100 mm/12 h), the availability of observations for nudging and validation, and the large observation impact found in preliminary sensitivity experiments. We systematically compare simulations performed with the COnsortium for Small scale MOdelling (COSMO) model assimilating GPS, high- and low vertical resolution radiosoundings in model resolutions of 7 km, 2.8 km and 500 m. The results show that the additional GPS and radiosonde observations cannot compensate errors in the model dynamics and physics. In this regard the reference COSMO runs have an atmospheric moisture wet bias prior to precipitation onset but a negative bias in rainfall, indicative of deficiencies in the numerics and physics, unable to convert the moisture excess into sufficient precipitation. Nudging GPS and high-resolution soundings corrects atmospheric humidity, but even further reduces total precipitation. This case study also demonstrates the potential impact of individual observations in highly unstable environments. We show that assimilating a low-resolution sounding from Nimes (southern France) while precipitation is taking place induces a 40 % increase in precipitation during the subsequent three hours. This precipitation increase is brought about by the moistening of the 700  hPa level (7.5 g kg−1) upstream of the main precipitating systems, reducing the entrainment of dry air above the boundary layer. The moist layer was missed by GPS observations and high-resolution soundings alike, pointing to the importance of profile information and timing. However, assimilating GPS was beneficial for simulating the temporal evolution of precipitation. Finally, regarding the scale dependency, no resolution is particularly sensitive to a specific observation type, however the 2.8 km run has overall better scores, possibly as this is the optimally tuned operational version of COSMO. In follow-up experiments the Icosahedral Nonhydrostatic Model (ICON) will be investigated for this case study to assert whether its numerical and physics updates, compared to its predecessor COSMO, are able to improve the quality of the simulations.


2016 ◽  
Author(s):  
Masuo Nakano ◽  
Akiyoshi Wada ◽  
Masahiro Sawada ◽  
Hiromasa Yoshimura ◽  
Ryo Onishi ◽  
...  

Abstract. Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolution ~ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales


2020 ◽  
Author(s):  
Jürgen Helmert ◽  
Alla Yurova ◽  
Denis Blinov ◽  
Inna Rozinkina ◽  
Michael Baldauf ◽  
...  

&lt;p&gt;Europe - especially the northern and middle latitudes - is one of Earth&amp;#8217;s mire-rich regions. Among the main distribution areas for mires in Central Europe the coastal region along the southeastern corner of the North Sea (Frisia) shows the highest density of mires. Despite of the important role of mires acting as a carbon sink and modifying the Bowen ratio with influence on screen level meteorological parameters their adequate representation in land-surface schemes used in numerical weather prediction and climate models is still insufficient.&lt;/p&gt;&lt;p&gt;With the recent version 5.06 the COSMO model (Baldauf et al., 2017) offers a parameterization of mires based on Yurova et al. (2014). In this approach the heat diffusion in the vertical domain of the soil multilayer model TERRA is considered with modified equations describing the thermal conductivity for peat with given water/ice contents. The mire hydrology is parameterized by the solution of the Richard's equation in the vertical domain extended by the formulation of a lower boundary condition as a climatological layer of permanent saturation used to simulate the water table position, in conjunction with a mire&amp;#8208;specific evapotranspiration and runoff parameterization.&lt;/p&gt;&lt;p&gt;The impact of the mire parameterization on screen level meteorological parameters and mesoscale processes was investigated in two numerical experiments with COSMO-D2 in a convection permitting limited-area numerical weather prediction (NWP) framework for summer 2018 and winter 2018/2019.&lt;/p&gt;&lt;p&gt;We will present results from the objective verification system and discuss the impact of geospatial physiographic data for an improved representation of mires in the NWP framework.&lt;/p&gt;


Author(s):  
S. Roshny ◽  
D. Bala Subrahamanyam ◽  
T. J. Anurose ◽  
Radhika Ramachandran

Abstract. A significant source of uncertainty in Numerical Weather Prediction (NWP) models arises from the parameterization of sub-grid scale convection, whose inherent nature of complexity is amplified while applied to tropical regions where weather systems are controlled by many intricate factors. However, as the model resolution becomes finer, it is possible to switch off the convection parameterization, although it is still unclear at what resolution this can be achieved. Ambiguity arises due to the inter-linking of various parameterization schemes within a model, and efficiency of one scheme depends on the output of another. In order to explore these issues, an intense convective episode with very heavy precipitation over the coastal Arabian Sea associated with the passage of OCKHI, one of the very severe cyclonic storms, is chosen as a case study. A set of distinct numerical simulations are carried out using Consortium for Small-scale Modelling (COSMO) to assess the direct and indirect impacts of dynamical downscaling on the treatment of convection. Results obtained from the present investigation indicate dynamical downscaling together with switching off the convection parameterization could simulate the magnitudes of CAPE, one of the proxies for characterizing the occurrence of tropical convection, more realistically. But the downscaling did not improve the rainfall prediction, which were seen to deteriorate in the absence of convection parameterization.


2021 ◽  
Vol 21 (15) ◽  
pp. 11857-11887
Author(s):  
César Sauvage ◽  
Cindy Lebeaupin Brossier ◽  
Marie-Noëlle Bouin

Abstract. The western Mediterranean Sea area is frequently affected in autumn by heavy precipitation events (HPEs). These severe meteorological episodes, characterized by strong offshore low-level winds and heavy rain in a short period of time, can lead to severe flooding and wave-submersion events. This study aims to progress towards an integrated short-range forecast system via coupled modeling for a better representation of the processes at the air–sea interface. In order to identify and quantify the coupling impacts, coupled ocean–atmosphere–wave simulations were performed for a HPE that occurred between 12 and 14 October 2016 in the south of France. The experiment using the coupled AROME-NEMO-WaveWatchIII system was notably compared to atmosphere-only, coupled atmosphere–wave and ocean–atmosphere simulations. The results showed that the HPE fine-scale forecast is sensitive to both couplings: the interactive coupling with the ocean leads to significant changes in the heat and moisture supply of the HPE that intensify the convective systems, while coupling with a wave model mainly leads to changes in the low-level dynamics, affecting the location of the convergence that triggers convection over the sea. Result analysis of this first case study with the AROME-NEMO-WaveWatchIII system does not clearly show major changes in the forecasts with coupling and highlights some attention points to follow (ocean initialization notably). Nonetheless, it illustrates the higher realism and potential benefits of kilometer-scale coupled numerical weather prediction systems, in particular in the case of severe weather events over the sea and/or in coastal areas, and shows their affordability to confidently progress towards operational coupled forecasts.


Author(s):  
Aristofanis Tsiringakis ◽  
Natalie E. Theeuwes ◽  
Janet F. Barlow ◽  
Gert-Jan Steeneveld

AbstractUnderstanding the physical processes that affect the turbulent structure of the nocturnal urban boundary layer (UBL) is essential for improving forecasts of air quality and the air temperature in urban areas. Low-level jets (LLJs) have been shown to affect turbulence in the nocturnal UBL. We investigate the interaction of a mesoscale LLJ with the UBL during a 60-h case study. We use observations from two Doppler lidars and results from two high-resolution numerical-weather-prediction models (Weather Research and Forecasting model, and the Met Office Unified Model for limited-area forecasts for the U.K.) to study differences in the occurrence frequency, height, wind speed, and fall-off of LLJs between an urban (London, U.K.) and a rural (Chilbolton, U.K.) site. The LLJs are elevated ($$\approx $$ ≈ 70 m) over London, due to the deeper UBL, while the wind speed and fall-off are slightly reduced with respect to the rural LLJ. Utilizing two idealized experiments in the WRF model, we find that topography strongly affects LLJ characteristics, but there is still a substantial urban influence. Finally, we find that the increase in wind shear under the LLJ enhances the shear production of turbulent kinetic energy and helps to maintain the vertical mixing in the nocturnal UBL.


Sign in / Sign up

Export Citation Format

Share Document