scholarly journals Number-average size model for geological systems and its application in economic geology

2011 ◽  
Vol 18 (4) ◽  
pp. 447-454 ◽  
Author(s):  
Q. F. Wang ◽  
L. Wan ◽  
Y. Zhang ◽  
J. Zhao ◽  
H. Liu

Abstract. Various natural objects follow a number-size relationship in the fractal domain. In such relationship, the accumulative number of the objects beyond a given size shows a power-law relationship with the size. Yet in most cases, we also need to know the relationship between the accumulative number of the objects and their average size. A generalized number-size model and a number-average size model are constructed in this paper. In the number-average size model, the accumulative number shows a power-law relationship with the average size when the given size is much less than the maximum size of the objects. When the fractal dimension Ds of the number-size model is smaller than 1, the fractal dimension Ds of the number-average size model is almost equal to 1; and when Ds > 1, the Dm is approximately equal to Ds. In mineral deposits, according to the number-average size model, the ore tonnage may show a fractal relationship with the grade, as the cutoff changes for a single ore deposit. This is demonstrated by a study of the relationship between tonnage and grade in the Reshuitang epithermal hot-spring gold deposit, China.

Fractals ◽  
2015 ◽  
Vol 23 (03) ◽  
pp. 1550028 ◽  
Author(s):  
YUE XI ◽  
JINJIAN CHEN ◽  
YONGFU XU ◽  
FEIFEI CHU ◽  
CHUANXIN LIU

A model for the yield stress of aggregates is presented that incorporates fractal dimension taking into account the solid volume fraction and the aggregate diameter. The model shows the yield stress (σy) of aggregates increases with the solid volume fraction (ϕs) as a power law, and is given by [Formula: see text], where the exponent (m) is related to fractal dimension (D), and σy0 is a referenced parameter. The relationship between exponent (m) and fractal dimension is validated by published data of aggregates and represents the measured data very well, over a wide range of the solid volume fractions. The referenced parameter (σy0) is calibrated from experiments of yield stress using power law fittings. The agreement between theory and experiments supports the idea that yielding is ultimately caused by the rupture of a few interparticle bonds within aggregates. In addition, the proposed model for the yield stress of aggregates is found to match better with experiments by comparing with all models in literature.


2013 ◽  
Vol 448-453 ◽  
pp. 1147-1150 ◽  
Author(s):  
Zhao Yang Su ◽  
Xing Li ◽  
Yan Ling Yang ◽  
Zhi Wei Zhou ◽  
Wu Chang Song ◽  
...  

In current paper, compared to the conventional coagulation, micro-sand (MS) and magnetic powder (MP) ballasted flocculation were investigated during the treatment of micro-polluted surface water by simulating ActifloTM and SiroflocTM process. Under an optimized operation condition, the optimal turbidity, CODMnand TP removal, 94.5%, 75.1% and 93.0%, respectively could be achieved by the MP process. In further research, pollutants removal efficiency at various settling time (5, 10, 15, 20 min), flocs two-dimensional fractal dimension and average size were simultaneously studied and the relationship among them was also discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 753
Author(s):  
Ivan Chajda ◽  
Helmut Länger

In order to be able to use methods of universal algebra for investigating posets, we assigned to every pseudocomplemented poset, to every relatively pseudocomplemented poset and to every sectionally pseudocomplemented poset, a certain algebra (based on a commutative directoid or on a λ-lattice) which satisfies certain identities and implications. We show that the assigned algebras fully characterize the given corresponding posets. A certain kind of symmetry can be seen in the relationship between the classes of mentioned posets and the classes of directoids and λ-lattices representing these relational structures. As we show in the paper, this relationship is fully symmetric. Our results show that the assigned algebras satisfy strong congruence properties which can be transferred back to the posets. We also mention applications of such posets in certain non-classical logics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María-Eugenia DeCastro ◽  
Michael P. Doane ◽  
Elizabeth Ann Dinsdale ◽  
Esther Rodríguez-Belmonte ◽  
María-Isabel González-Siso

AbstractIn the present study we investigate the microbial community inhabiting As Burgas geothermal spring, located in Ourense (Galicia, Spain). The approximately 23 Gbp of Illumina sequences generated for each replicate revealed a complex microbial community dominated by Bacteria in which Proteobacteria and Aquificae were the two prevalent phyla. An association between the two most prevalent genera, Thermus and Hydrogenobacter, was suggested by the relationship of their metabolism. The high relative abundance of sequences involved in the Calvin–Benson cycle and the reductive TCA cycle unveils the dominance of an autotrophic population. Important pathways from the nitrogen and sulfur cycle are potentially taking place in As Burgas hot spring. In the assembled reads, two complete ORFs matching GH2 beta-galactosidases were found. To assess their functional characterization, the two ORFs were cloned and overexpressed in E. coli. The pTsbg enzyme had activity towards o-Nitrophenyl-β-d-galactopyranoside (ONPG) and p-Nitrophenyl-β-d-fucopyranoside, with high thermal stability and showing maximal activity at 85 °C and pH 6, nevertheless the enzyme failed to hydrolyze lactose. The other enzyme, Tsbg, was unable to hydrolyze even ONPG or lactose. This finding highlights the challenge of finding novel active enzymes based only on their sequence.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


Author(s):  
Tom Hutchcroft

AbstractWe study long-range Bernoulli percolation on $${\mathbb {Z}}^d$$ Z d in which each two vertices x and y are connected by an edge with probability $$1-\exp (-\beta \Vert x-y\Vert ^{-d-\alpha })$$ 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger (Commun. Math. Phys., 2002) that if $$0<\alpha <d$$ 0 < α < d then there is no infinite cluster at the critical parameter $$\beta _c$$ β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound $$\begin{aligned} {\mathbf {P}}_{\beta _c}\bigl (|K|\ge n\bigr ) \le C n^{-(d-\alpha )/(2d+\alpha )} \end{aligned}$$ P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every $$n\ge 1$$ n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality $$(2-\eta )(\delta +1)\le d(\delta -1)$$ ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent $$\delta $$ δ and two-point function exponent $$\eta $$ η .


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Adam Hartstone-Rose ◽  
Jonathan M. G. Perry

In a recent study, we quantified the scaling of ingested food size (Vb )—the maximum size at which an animal consistently ingests food whole—and found that Vb scaled isometrically between species of captive strepsirrhines. The current study examines the relationship between Vb and body size within species with a focus on the frugivorous Varecia rubra and the folivorous Propithecus coquereli. We found no overlap in Vb between the species (all V. rubra ingested larger pieces of food relative to those eaten by P. coquereli), and least-squares regression of Vb and three different measures of body mass showed no scaling relationship within each species. We believe that this lack of relationship results from the relatively narrow intraspecific body size variation and seemingly patternless individual variation in Vb within species and take this study as further evidence that general scaling questions are best examined interspecifically rather than intraspecifically.


Author(s):  
Miao Cheng ◽  
Ah Chung Tsoi

As a general means of expression, audio analysis and recognition have attracted much attention for its wide applications in real-life world. Audio emotion recognition (AER) attempts to understand the emotional states of human with the given utterance signals, and has been studied abroad for its further development on friendly human–machine interfaces. Though there have been several the-state-of-the-arts auditory methods devised to audio recognition, most of them focus on discriminative usage of acoustic features, while feedback efficiency of recognition demands is ignored. This makes possible application of AER, and rapid learning of emotion patterns is desired. In order to make predication of audio emotion possible, the speaker-dependent patterns of audio emotions are learned with multiresolution analysis, and fractal dimension (FD) features are calculated for acoustic feature extraction. Furthermore, it is able to efficiently learn the intrinsic characteristics of auditory emotions, while the utterance features are learned from FDs of each sub-band. Experimental results show the proposed method is able to provide comparative performance for AER.


2019 ◽  
Vol 7 (4) ◽  
pp. SJ1-SJ6 ◽  
Author(s):  
Liang Luo ◽  
Jiahong Jin ◽  
Wei Wei ◽  
Jianchao Cai

The microstructure of reservoir rocks plays an important role in oil and gas accumulation and production. We examine a universal method to evaluate these properties of rocks, such as pore tortuosity, matrix porosity, and connectivity, and we respectively construct a 2D numerical reconstruction rock model with different microstructure parameters by the Monte Carlo method and the quartet structure generation set method. We further study the heterogeneity (characterized by fractal dimension and tortuosity) of the constructed image for reservoir rocks by the numerical and theoretical analysis and obtain the formulas for fractal dimension and tortuosity versus porosity. The simulation results show that the logarithmic relation is between the pore fractal dimension and porosity, and the relationship between tortuosity and porosity has the form of power. This process provided an important method to advance 2D reconstruction technology of reservoir rocks and effectively determine the relationship between microstructure and porosity.


Sign in / Sign up

Export Citation Format

Share Document