scholarly journals Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan

Author(s):  
Duc-Huy Tran ◽  
Shih-Jung Wang

Abstract. Pingtung coastal plain, located at the active convergent boundary between Philippine Sea Plate and Eurasian Plate, is one of the most active areas regarding tectonic deformation in Taiwan. Groundwater over-pumping for aquaculture along the coast area of Pingtung plain induced a serious land subsidence problem for decades. How much land subsidence contributed by tectonic activity and groundwater pumping is a crucial issue for tectonic study and groundwater management in this area. This study collected the data in different fields and proposed a conceptual model to calculate the quantities of land subsidence caused by natural (tectonic) and human (pumping) factors. The data from the Global Positioning System (GPS) are used to illustrate the total subsidence concerning vertical displacement. A system called the multi-level compaction monitoring well (MCMW) is able to measure the vertical compaction in different depths from the earth surface to the depth of 200 m. Two GPS stations, named CLON and FALI, close to two MCMWs, named Jiadong and Fangliao, are adopted for analysis The data during 2007 and 2016 taken from MCMWs and groundwater observation wells indicate that the compaction in the shallow depth should be mainly caused by groundwater over-pumping due to their high correlation coefficients (from 0.58–0.95). The difference of the vertical deformation between GPS and MCMW indicates that there is deformation beyond the depth within 200 m. From the data and literature, the further vertical deformation should be due to tectonic activity associated with tectonic escape and extrusion of the Taiwan orogen with average vertical deformation from −3.0 to −4.4 mm. Therefore, the quantities of land subsidence contributed by local groundwater over-pumping and regional tectonic activities are successfully separated. The method and concept proposed in this study can be used in land subsidence quantification due to both tectonic activity and groundwater over-pumping.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


1994 ◽  
Vol 84 (5) ◽  
pp. 1387-1396
Author(s):  
Shigeo Kinoshita

Abstract The attenuation characteristics of shear waves in the crust of the southern Kanto area, central Japan, were estimated using strong-motion data, including acceleration data recorded in the pre-Tertiary basement rocks by means of downhole observation. The quality factor Qs(f) was determined for a range of discrete frequencies from 0.5 to 16 Hz from the analysis of data from 13 local earthquakes with focal depths of less than about 50 km that occurred in the Philippine Sea plate and in the boundary zone between the lower part of the Eurasian plate and the upper part of the Philippine Sea plate. The estimated 1/Qs(f) shows a peaked structure in this frequency range on the assumption that the geometrical spreading exponent is -1 (body waves). The estimated peak 1/Qs(f) is of the order of 10-2 at 0.8 Hz.


Author(s):  
Martin Hernandez-Marin ◽  
Ruben Esquivel-Ramirez ◽  
Mario Eduardo Zermeño-De-Leon ◽  
Lilia Guerrero-Martinez ◽  
Jesus Pacheco-Martinez ◽  
...  

Abstract. In the Aguascalientes valley, middle Mexico, the demand of groundwater from the local aquifer system was suddenly increased after the late 1970s. Since then, several related problems have been occurring or become critical such as land subsidence, ground fissuring, and low-magnitude earthquakes. The most recent data of vertical deformation from PSInSAR, groundwater levels, and earthquakes, has provided critical information regarding the relationship amongst all these processes. In particular, that related to land subsidence, earth fissuring and seismicity. Regarding this, more satellite imagery and data from GPS stations are being revised as a possibility of a more generalized vertical deformation derived with low-magnitude seismicity. A particular seismic event recorded on 6 April 2019 has revealed critical information on the close association between vertical displacements occurred in active faults and low-magnitude seismic events.


2020 ◽  
Vol 5 (2) ◽  
pp. 30-43
Author(s):  
Bagas Setyadi ◽  
Rustadi Rustadi

Bandar Lampung is one of the cities in Indonesia, which has a potential to land subsidence due to the extraction of ground water, mining, land conversion, and geological conditions. For that reason, carried out the study of land subsidence with SBAS technique, due to the very lack of information about the symptoms of land subsidence in Bandar Lampung. In this study, 15 SAR data in 2006 to 2011 used and then combined to produce 40 interferogram then inverted resulting in a time-series deformation and deformation speed average. Velocity precision obtained with SBAS technique is highly dependent on the type of land cover in the study area, but it is known that the average of land subsidence in Bandar Lampung is about 0.06 mm/year, which is considered quite stable due to the geological structure that does not allow for the occurrence of massive consolidation process. Several areas have indications of subsidence 5 mm/year are suspected to be caused by tectonic activity and human activity (industrial, mining, extraction of groundwater, and land conversion), which then has implications for structural damage to buildings, flooding in coastal areas, and landslides in hilly areas.


2001 ◽  
Vol 34 (4) ◽  
pp. 1405
Author(s):  
Γ. Δ. ΔΑΝΑΜΟΣ ◽  
Ε. Λ. ΛΕΚΚΑΣ ◽  
Σ. Γ. ΛΟΖΙΟΣ

The Jan. 26, 2001, Ms=7.7 earthquake occurred in Gujarat region of W. India, which lies 200-400 Km away from the active plate boundary zone, between the Indian subcontinent and the Asian plate, along the India-Pakistan border and the Himalayan belt. An Ms=7.7±0.2 earthquake also occurred in the same region in 1819. A zone of co-seismic E-W surface ruptures, 30-40 Km long and 15-20 Km wide, observed near the epicentral area and seems to be associated with pre-existing reverse faults and thrust folds, which were partially reactivated during the recent earthquake. Except the reverse vertical displacement a significant right lateral displacement was also observed along these E-W surface ruptures. This Ms=7.7 seismic event has been also accompanied by a large scale flexural-slip folding, as the absence of significant co-seismic fault displacement and fault scarp shows. This type of compressional tectonic deformation is also confirmed by the focal mechanism of the earthquake and the seismo-tectonic "history" of the area. The NW-SE open cracks, also observed along the same zone, are associated with the right lateral horizontal displacement of the reactivated fault (or branch faults) and the development of local extensional stress field in the huge anticlinic hinges of the co-seismic flexural-slip folds. A large number of ground ruptures, failures and open cracks are also associated with extensive sand boils, liquefaction phenomena and lateral spreading.


2021 ◽  
Author(s):  
Shreeja Das ◽  
Jyotirmoy Mallik

<p>The Fracture Induced Electromagnetic Radiation (FEMR) technique has gradually progressed in the past decade as a useful geophysical tool to determine the direction and magnitude of recent crustal stresses, visualize the modification and realignment of stresses inside tunnels thus proving to be an important precursor for geohazards, earthquake forecasting, as well as delineate landslide-prone slip planes in unstable regions. Its working principle is based on the generation of geogenic electromagnetic radiation emanating from the brittle rock bodies that are fractured being subjected to an incremental increase of the differential stress in the near-surface of the Earth’s crust. The “Process zone” at the fractured crack tip contains numerous microcracks which subsequently creates dipoles due to the polarization of charges on such microcrack tips which rapidly oscillates emitting FEMR waves of frequencies between KHz to MHz range. The coalescence of the microcracks eventually leads to a macro failure dampening the amplitude of the FEMR pulses. The attenuation of FEMR pulses is comparatively lesser than seismic waves making it a more efficient precursor to potential tectonic activities indicating an upcoming earthquake a few hours/days before the actual event. In the current study, we have attempted to exploit this technique to identify the locations of the potential active faults across the tectonically active Narmada-Son Lineament (NSL), Central India. Although the first tectonic stage involved rifting and formation of the NSL during the Precambrian time, the rifting continued at least till the time of Gondwana deposition. Later, tectonic inversion took place as a result of the collision between the Indian and the Eurasian plate resulting in reverse reactivation of the faults. Episodic reverse movement along NSL caused recurrent earthquakes and linear disposition of the sediments that were deposited at the foothills of the Satpura Horst. Although the origin of East-West trending NSL dates back to the Precambrian time, it is very much tectonically active as manifested by recent earthquakes. The study has been conducted by taking linear FEMR readings across 3 traverses along the NSL which on analysis provides an idea about the potential active faults, their locations, and frequency of occurrence. The accumulation of strain in the brittle rocks that can eventually lead to a macro failure is demarcated as an anomalous increase in the amplitude of the FEMR pulses indicative of an upcoming tectonic episode in the region. To further corroborate the analysis, we have attempted to determine the neo-tectonic activity in the region by calculating the morphometric parameters across the Khandwa-Itarsi-Jabalpur region, Central India. Finally, we attempt to comment on the tectonic evolution of Central India in the recent past. We also encourage researchers to adapt the novel technique of FEMR which is swift, affordable, and feasible compared to conventional techniques deployed to survey the active tectonics of a region.</p>


2020 ◽  
Author(s):  
Susanne Buiter

<p>Seismic observations show that some rifted continental margins may have substantial amounts of offshore sediments. For example, sediment layers of several kilometres thick are found on the margins of Mid Norway, Namibia and Angola. Intriguingly, these margins are wide, being characterised by distances of several hundreds of kilometres from typical continental crustal thicknesses of 30-40 km to clearly identifiable oceanic crust. On the other hand, some margins that are sediment-starved, such as Goban Spur, Flemish Cap and Northern Norway, have short onshore-to-offshore transitions. Variations in the amount of sediments not only impact the development of offshore sedimentary basins, but the changes in mass balance by erosion and sedimentation can also interact with extensional tectonic processes. In convergent settings, such feedback relationships between erosion and tectonic deformation have long been highlighted: Erosion reduces the elevation and width of mountain belts and in turn tectonic activity and exhumation are focused at regions of enhanced erosion. But what is the role played by surface processes during formation of rifted continental margins?</p><p>I use geodynamic finite-element experiments to explore the response of continental rifts to erosion and sedimentation from initial rifting to continental break-up. The experiments predict that rifted margins with thick syn-rift sedimentary packages are more likely to form hyper-extended crust and require more stretching to achieve continental break-up than sediment-starved margins. These findings imply that surface processes can control the style of continental break-up and that the role of sedimentation in rifted margin evolution goes far beyond the simple exertion of a passive weight.</p>


2021 ◽  
Author(s):  
Wei Shi ◽  
Hanchao Jiang ◽  
Siyuan Ma ◽  
Hongyan Xu ◽  
Jiawei Fan ◽  
...  

Author(s):  
Dwi Lestari ◽  
Yulaikhah Yulaikhah ◽  
Rizki Iman Sari

Borobudur is Indonesian's cultural heritage which is recognized as a world heritage by UNESCO. As a world heritage structure, monitoring and maintenance have to be carried out periodically at Borobudur. Monitoring the vertical deformation of the temple using Geodetic method is one kind of monitoring which have to be done, in this case the monitoring uses leveling network. The design of leveling network at Borobudur in 2002 used absolute network, but the control point of this network has been indicated to be shifted. The control point displacement would cause a systematic error in the adjustment computation method for the analysis of vertical displacement. The correction of control point elevation due to the vertical shift is needed prior to the adjustment computation using observation model. In addition, there is a time variant adjustment computation method which able to calculate the vertical rate of object point displacement. This study aims to compare the vertical displacement analysis of the Borobudur’s vertical network from the adjustment computation using observation model with the correction of control point height and from time-variant adjustment method.Data used in this study were the elevation differences from leveling measurements in 2002, 2003 and 2004, and the elevation and vertical velocity of the control point in 2002. Adjustment computation using observation model began with the elevation correction of control point at each epoch. The adjustment computation was taken to determine the elevation of monitoring points at each epoch. Statistical test and vertical displacement analysis using significance parameter tests was carried out to analyze the results. Adjustment computation using time-variant method was taken to determine the elevation and the vertical velocity of the monitoring points at certain epoch intervals and validated using global test after the adjustment computation.The vertical displacement magnitude of Borobudur’s monitoring points, resulted from the parameter adjustment computation with the correction of control point compared to the time-variant adjustment results was differed in nanometer.  Time-variant adjustment computation method gave more accurates result of 1.5 times better than the observation model.


Sign in / Sign up

Export Citation Format

Share Document