scholarly journals On the complexity of surface ruptures during normal faulting earthquakes: excerpts from the 6 April 2009 L'Aquila (central Italy) earthquake (<i>M</i><sub>w</sub> 6.3)

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 389-408 ◽  
Author(s):  
L. Bonini ◽  
D. Di Bucci ◽  
G. Toscani ◽  
S. Seno ◽  
G. Valensise

Abstract. Over the past few years the assessment of the earthquake potential of large continental faults has increasingly relied on field investigations. State-of-the-art seismic hazard models are progressively complementing the information derived from earthquake catalogs with geological observations of active faulting. Using these observations, however, requires full understanding of the relationships between seismogenic slip at depth and surface deformation, such that the evidence indicating the presence of a large, potentially seismogenic fault can be singled out effectively and unambiguously. We used observations and models of the 6 April 2009, Mw 6.3, L'Aquila, normal faulting earthquake to explore the relationships between the activity of a large fault at seismogenic depth and its surface evidence. This very well-documented earthquake is representative of mid-size yet damaging earthquakes that are frequent around the Mediterranean basin, and was chosen as a paradigm of the nature of the associated geological evidence, along with observational difficulties and ambiguities. Thanks to the available high-resolution geologic, geodetic and seismological data aided by analog modeling, we reconstructed the full geometry of the seismogenic source in relation to surface and sub-surface faults. We maintain that the earthquake was caused by seismogenic slip in the range 3–10 km depth, and that the slip distribution was strongly controlled by inherited discontinuities. We also contend that faulting was expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending and by sympathetic slip on secondary faults. Based on our results we propose a scheme of normal fault hierarchization through which all surface occurrences related to faulting at various depths can be interpreted in the framework of a single, mechanically coherent model. We stress that appreciating such complexity is crucial to avoiding severe over- or under-estimation of the local seismogenic potential.

2013 ◽  
Vol 5 (2) ◽  
pp. 2043-2079
Author(s):  
L. Bonini ◽  
D. Di Bucci ◽  
G. Toscani ◽  
S. Seno ◽  
G. Valensise

Abstract. Over the past few years the assessment of the earthquake potential of large continental faults has increasingly relied on field investigations. State-of-the-art seismic hazard models are progressively complementing the information derived from earthquake catalogues with geological observations of active faulting. Using these observations, however, requires full understanding of the relationships between seismogenic slip at depth and surface deformation, such that the evidence indicating the presence of a large, potentially seismogenic fault can be singled out effectively and unambiguously. We used observations and models of the 6 April 2009, Mw 6.3, L'Aquila, normal faulting earthquake to explore the relationships between the activity of a large fault at seismogenic depth and its surface evidence. This very well-documented earthquake is representative of mid-size yet damaging earthquakes that are frequent around the Mediterranean Basin, and is somehow paradigmatic of the nature of the associated geologic evidence along with observational difficulties and ambiguities. Thanks to available high-resolution geologic, geodetic and seismological data aided by analogue modeling, we reconstructed the full geometry of the seismogenic source in relation with surface and sub-surface faults. We find that the earthquake was caused by seismogenic slip in the range 3–10 km depth, and that the slip distribution was strongly controlled by inherited discontinuities. We also contend that faulting was expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending and by sympathetic slip on secondary faults. Based on our results we propose a scheme for hierarchizing normal faults through which all surface occurrences related to faulting at depth can be interpreted in the frame of a single, mechanically coherent model. Appreciating such complexity is crucial to avoid severe over- or under-estimation of the local seismogenic potential.


2020 ◽  
Vol 221 (1) ◽  
pp. 451-466 ◽  
Author(s):  
Qian Xu ◽  
Qiang Chen ◽  
Jingjing Zhao ◽  
Xianwen Liu ◽  
Yinghui Yang ◽  
...  

SUMMARY A sequence of earthquake events consisting of three large shocks occurred in Central Italy from August to October in 2016 with the duration of almost 2 months. The preliminary study on the seismic mechanism suggests that the sequence of events is the result from the activity of the SW dipping Mt Bove–Mt Vettore–Mt Gorzano normal fault system. For investigation and understanding of the coseismic faulting of the seismogenic fault alignment, we collect a set of comprehensive satellite observations including the Sentinel-1A, ALOS-2/PALSAR-2 and GPS data to map the coseismic surface deformation and estimate the source models in this study. The derived faulting model for the first Amatrice event is characterized by two distinct slip asperities suggesting that it is a predominantly normal dip-slip motion with slight strike-slip component. The second event, Visso earthquake is almost a purely normal rupture. The third Norcia event is dominated by the normal dip-slip rupture of the seismogenic fault, and has propagated up to the ground with significant slip. The three faulting models are then utilized to quantify the Coulomb failure stress (CFS) change over the seismic zone. First, the CFS change on the subsequent two seismogenic faults of the earthquake sequence is estimated, and the derived positive CFS change induced by the preceding earthquakes suggests that the early events have positive effects on triggering the subsequent seismicity. We then explore the response relation of the aftershocks including 961 events with magnitudes larger than M 3.0 to the CFS change over the seismic zone. It suggests that the rupture pattern of the aftershocks is similar to the major shocks with predominantly normal dip-slip. To assess the risk of the future seismic hazard, we analyse quantitatively the spatial distribution of aftershock occurrence and CFS transfer at the seismogenic depth, indicating that the ruptures of the three major shocks do partly release the accumulated strain on the associated fault alignment as well as the dense aftershock, but the CFS increase zone with few aftershocks in the southwest of the eastern Quaternary fault alignment of Central Italy poses the potential of further rupture. In particular, the distribution of aftershock migration also suggests that the north extension of the Mt Bove fault is the potential zone with rupture risk.


2021 ◽  
Vol 9 ◽  
Author(s):  
Federica Ferrarini ◽  
Rita de Nardis ◽  
Francesco Brozzetti ◽  
Daniele Cirillo ◽  
J Ramón Arrowsmith ◽  
...  

The Apenninic chain, in central Italy, has been recently struck by the Norcia 2016 seismic sequence. Three mainshocks, in 2016, occurred on August 24 (MW6.0), October 26 (MW 5.9) and October 30 (MW6.5) along well-known late Quaternary active WSW-dipping normal faults. Coseismic fractures and hypocentral seismicity distribution are mostly associated with failure along the Mt Vettore-Mt Bove (VBF) fault. Nevertheless, following the October 26 shock, the aftershock spatial distribution suggests the activation of a source not previously mapped beyond the northern tip of the VBF system. In this area, a remarkable seismicity rate was observed also during 2017 and 2018, the most energetic event being the April 10, 2018 (MW4.6) normal fault earthquake. In this paper, we advance the hypothesis that the Norcia seismic sequence activated a previously unknown seismogenic source. We constrain its geometry and seismogenic behavior by exploiting: 1) morphometric analysis of high-resolution topographic data; 2) field geologic- and morphotectonic evidence within the context of long-term deformation constraints; 3) 3D seismological validation of fault activity, and 4) Coulomb stress transfer modeling. Our results support the existence of distributed and subtle deformation along normal fault segments related to an immature structure, the Pievebovigliana fault (PBF). The fault strikes in NNW-SSE direction, dips to SW and is in right-lateral en echelon setting with the VBF system. Its activation has been highlighted by most of the seismicity observed in the sector. The geometry and location are compatible with volumes of enhanced stress identified by Coulomb stress-transfer computations. Its reconstructed length (at least 13 km) is compatible with the occurrence of MW≥6.0 earthquakes in a sector heretofore characterized by low seismic activity. The evidence for PBF is a new observation associated with the Norcia 2016 seismic sequence and is consistent with the overall tectonic setting of the area. Its existence implies a northward extent of the intra-Apennine extensional domain and should be considered to address seismic hazard assessments in central Italy.


2016 ◽  
Vol 46 ◽  
pp. 81 ◽  
Author(s):  
A. Ganas ◽  
E. Lekkas ◽  
M. Kolligri ◽  
A. Moshou ◽  
K. Makropoulos

The Upper Messinia basin (Peloponnese, Greece) hosted a seismic swarm during the second half of 2011. The geological evidence (surface breaks striking N160°E), the seismological data (distribution of relocated earthquakes and T-axis orientation) and severe damage distribution are aligned along the eastern margin of the basin, so as they are attributed to reactivation of the bordering NNW-SSE normal fault. In particular, the rupture of the 14 August 2011 M=4.8 event is associated to the surface breaks inside the village Siamo. The length of the reactivated fault is estimated as 7 ±1 km based on the longest dimension (NW-SE) of the swarm epicentres (June to October 2011). The mode of rupture of the Siamo fault is probably related to a) the change in stress field orientation from south to north inside the basin (from E-W extension in the Siamo – Katsaro area to N-S extension in the north of Oichalia area) and/or b) to the occurrence of magmatic fluids due to the proximity of Messinia to the Hellenic subduction.


2018 ◽  
Vol 34 (4) ◽  
pp. 1585-1610 ◽  
Author(s):  
Stefano Gori ◽  
Emanuela Falcucci ◽  
Fabrizio Galadini ◽  
Paolo Zimmaro ◽  
Alberto Pizzi ◽  
...  

The three mainshock events (M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016) in the Central Italy earthquake sequence produced surface ruptures on known segments of the Mt. Vettore–Mt. Bove normal fault system. As a result, teams from Italian national research institutions and universities, working collaboratively with the U.S. Geotechnical Extreme Events Reconnaissance Association (GEER), were mobilized to collect perishable data. Our reconnaissance approach included field mapping and advanced imaging techniques, both directed towards documenting the location and extent of surface rupture on the main fault exposure and secondary features. Mapping activity occurred after each mainshock (with different levels of detail at different times), which provides data on the progression of locations and amounts of slip between events. Along the full length of the Mt. Vettore–Mt. Bove fault system, vertical offsets ranged from 0–35 cm and 70–200 cm for the 24 August and 30 October events, respectively. Comparisons between observed surface rupture displacements and available empirical models show that the three events fit within expected ranges.


2013 ◽  
Vol 5 (1) ◽  
pp. 117-134
Author(s):  
L. Bonini ◽  
D. Di Bucci ◽  
G. Toscani ◽  
S. Seno ◽  
G. Valensise

Abstract. Understanding the relationship between seismogenic slip at depth and surface deformation is fundamental in any seismic hazard analysis because the assessment of the earthquake potential of large continental faults relies largely on field investigations. The well-documented 6 April 2009, Mw 6.3, L'Aquila earthquake affords a unique opportunity to explore the relationships between the activity of the deep source and its surface evidence. We used available high-resolution geologic, geodetic and seismological data aided by analogue modeling to reconstruct the geometry of the seismogenic rupture in relation with surface and sub-surface faults. We contend that the earthquake was caused by a blind fault, controlled at depth by pre-existing discontinuities and expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending. Finally, we propose a scheme for hierarchizing normal faults that explains all surface occurrences related to blind faulting in the frame of a single, mechanically coherent, interpretative model. Failure to appreciate such complexity may result in severe over– or under-estimation of the local seismogenic potential.


2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.


2021 ◽  
Author(s):  
Vanja Kastelic ◽  
Simone Atzori ◽  
Michele M. C. Carafa ◽  
Marin Marin Govorčin ◽  
Davorka Herak ◽  
...  

&lt;p&gt;The ongoing Petrinja earthquake sequence interests a structurally complex area characterized by the transition between the Dinarides and the Pannonian Basin structural units. The sequence mainshock (December 29, 2020; Mw = 6.4) struck in the vicinity of the Petrinja town and caused significant damage in the human and in the natural environments. The preliminary seismological and geodetic analyses indicated a dextral strike-slip NW-SE oriented fault as the event source. Numerous geologic surface deformation patterns have been identified in the aftermath of the main event, including collapsed sinkholes, liquefaction, different forms of landslides, and surface fractures which nature and causative process require further detailed studies.&lt;br&gt;The aim of our contribution is to apply a multitude of different geophysical, geodetic and geologic methodologies to decipher the Petrinja seismogenic fault geometry in the light of its ongoing earthquake sequence. We will show how the different datasets converge in delineating the fault geometry and discuss their diverging aspects and implications. Our preliminary analyses on the geometric and kinematic characteristics of the mainshock (as well as those of the foreshocks and aftershocks) point to an important structural complexity. This aspect helps us to better understand the seismotectonic framework of the Petrinja seismogenic fault and other regional seismogenic faults of similar geologic and geodynamic setting.&lt;/p&gt;


2018 ◽  
Vol 34 (4) ◽  
pp. 1547-1555 ◽  
Author(s):  
Jonathan P. Stewart ◽  
Paolo Zimmaro ◽  
Giuseppe Lanzo ◽  
Silvia Mazzoni ◽  
Ernesto Ausilio ◽  
...  

The Central Italy earthquake sequence nominally began on 24 August 2016 with a M6.1 event on a normal fault that produced devastating effects in the town of Amatrice and several nearby villages and hamlets. A major international response was undertaken to record the effects of this disaster, including surface faulting, ground motions, landslides, and damage patterns to structures. This work targeted the development of high-value case histories useful to future research. Subsequent events in October 2016 exacerbated the damage in previously affected areas and caused damage to new areas in the north, particularly the relatively large town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 documented and mapped several large landslide features and increased damage states for structures in villages and hamlets throughout the region. This paper provides an overview of the reconnaissance activities undertaken to document and map these and other effects, and highlights valuable lessons learned regarding faulting and ground motions, engineering effects, and emergency response to this disaster.


Sign in / Sign up

Export Citation Format

Share Document