scholarly journals Oblique collision and deformation partitioning in the SW Iberian Variscides

2015 ◽  
Vol 7 (4) ◽  
pp. 3773-3815 ◽  
Author(s):  
I. Pérez-Cáceres ◽  
J. F. Simancas ◽  
D. Martínez Poyatos ◽  
A. Azor ◽  
F. González Lodeiro

Abstract. Different transpressional scenarios have been proposed to relate kinematics and complex deformation patterns. We apply the most suitable of them to the Variscan orogeny in SW Iberia, which is characterized by a number of successive left-lateral transpressional structures developed at Devonian to Carboniferous times. These structures resulted from the oblique convergence between three continental terranes (Central Iberian Zone, Ossa-Morena Zone and South Portuguese Zone), whose amalgamation gave way to both intense shearing at the suture-like contacts and transpressional deformation of the continental pieces in-between, thus showing strain partitioning in space and time. We have quantified the kinematics of the collisional convergence by using the available data on folding, shearing and faulting patterns, as well as tectonic fabrics and finite strain measurements. Given the uncertainties regarding the data and the boundary conditions modeled, our results must be considered as a semi-quantitative approximation to the issue, though very significant from a regional point of view. The total collisional convergence surpasses 1000 km, most of them corresponding to left-lateral displacement parallel to terrane boundaries. The average vector of convergence is oriented E–W (present-day coordinates), thus reasserting the left-lateral oblique collision in SW Iberia, in contrast with the dextral component that prevailed elsewhere in the Variscan orogen. This particular kinematics of SW Iberia is understood in the context of an Avalonian plate promontory currently represented by the South Portuguese Zone.

Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 857-872 ◽  
Author(s):  
Irene Pérez-Cáceres ◽  
José Fernando Simancas ◽  
David Martínez Poyatos ◽  
Antonio Azor ◽  
Francisco González Lodeiro

Abstract. Different transpressional scenarios have been proposed to relate kinematics and complex deformation patterns. We apply the most suitable of them to the Variscan orogeny in SW Iberia, which is characterized by a number of successive left-lateral transpressional structures developed in the Devonian to Carboniferous period. These structures resulted from the oblique convergence between three continental terranes (Central Iberian Zone, Ossa-Morena Zone and South Portuguese Zone), whose amalgamation gave way to both intense shearing at the suture-like contacts and transpressional deformation of the continental pieces in-between, thus showing strain partitioning in space and time. We have quantified the kinematics of the collisional convergence by using the available data on folding, shearing and faulting patterns, as well as tectonic fabrics and finite strain measurements. Given the uncertainties regarding the data and the boundary conditions modeled, our results must be considered as a semi-quantitative approximation to the issue, though very significant from a regional point of view. The total collisional convergence surpasses 1000 km, most of them corresponding to left-lateral displacement parallel to terrane boundaries. The average vector of convergence is oriented E–W (present-day coordinates), thus reasserting the left-lateral oblique collision in SW Iberia, in contrast with the dextral component that prevailed elsewhere in the Variscan orogen. This particular kinematics of SW Iberia is understood in the context of an Avalonian plate salient currently represented by the South Portuguese Zone.


2019 ◽  
Vol 158 (1) ◽  
pp. 84-103 ◽  
Author(s):  
Jacques Malavieille ◽  
Stephane Dominguez ◽  
Chia-Yu Lu ◽  
Chih-Tung Chen ◽  
Elena Konstantinovskaya

AbstractMany orogens on the planet result from plate convergence involving subduction of a continental margin. The lithosphere is strongly deformed during mountain building involving subduction of a plate composed generally of accreted continental margin units and some fragments of downgoing oceanic crust and mantle. A complex deformation involving strong partitioning of deformation modes and kinematics produces crustal shortening, accompanied by crustal thickening. Partitioning depends on three main factors: (1) rheologic layering of the lithosphere; (2) interaction between tectonics and surface processes; (3) subduction kinematics and 3D geometry of continental margins (oblique convergence, shape of indenters). Here we present an original view and discussion on the impact of deformation partitioning on the structure and evolution of orogens by examining the Taiwan mountain belt as a case study. Major unsolved questions are addressed through geological observations from the Taiwan orogen and insights from analogue models integrating surface processes. Some of these questions include: What is the role played by décollements or weak zones in crustal deformation and what is the impact of structural heterogeneities inherited from the early extensional history of a rifted passive continental margin? What is the relationship between deep underplating, induced uplift and flow of crustal material during erosion (finite strain evolution during wedge growth)? Are syn-convergent normal faults an effect of deformation partitioning and erosion? What is the role of strain partitioning on the location of major seismogenic faults in active mountain belts? What can be learned about the long-term and the present-day evolution of Taiwan?


2019 ◽  
pp. 5-30 ◽  
Author(s):  
Elena Konstantinovskaya ◽  
Gennady Ivanov ◽  
Jean-Louis Feybesse ◽  
Jean-Luc Lescuyer

The west-verging fold and thrust belt of the Central Labrador Trough originated as a part of the New Quebec Orogen from rift inversion as a result of oblique collision and dextral transpression between the Archean Superior craton and the Archean block of the Core Zone during the Trans-Hudson orogeny (1.82−1.77 Ga). The structures associated with dextral transpression are well established in the northern segment of the orogen but not in the central part. We present new field structural observations along the ca. 70 km long W−E Minowean-Romanet transect that include not only elements of thrust tectonics but also previously undocumented examples of strike-slip shear zones and late brittle, semi-brittle and ductile extensional structures which occurred both in the frontal and rear parts of the thrust wedge. The newly described low-angle mineral lineation, axes of cylindrical folds and dextral mylonitic shear zones in the footwall of the Romanet Fault are oriented subparallel to the orogen and reflect the early phase of oblique convergence. Mineral lineations and striations on planes of normal faults in the hanging wall of the Romanet Fault are oriented orthogonal to the orogen and correspond to a later phase of exhumation driven by the combined effects of erosion and underplating. To explain the increase in the degree of exhumation along the orogen in the study area from NW to SE, we propose a model of strain partitioning and differential exhumation that resulted from longitudinal variations of shortening and erosion under an oblique convergence setting.RÉSUMÉLa partie centrale de la ceinture de plissement et de chevauchement de la Fosse du Labrador de vergence vers l’ouest fait partie intégrante de l’Orogène du Nouveau-Québec, et résulte de la collision oblique avec transpression dextre entre le craton Supérieur archéen et le bloc archéen de la Zone noyau pendant l’Orogenèse trans-hudsonienne (1.82−1.77 Ga). Les structures associées à la transpression dextre sont bien établies dans la partie nord de l’orogène mais pas dans la partie centrale. Nous présentons de nouvelles observations structurales de terrain le long de la traverse ouest−est Minowean-Romanet d’environ 70 km de long, qui comprennent non seulement des évidences de tectonique de chevauchement, mais également des exemples encore non documentés de zones de cisaillement ductile et de structures d’extension fragiles, demi-fragiles et ductiles à la fois dans les parties frontales et arrière du prisme d’accrétion tectonique. La linéation minérale à faible plongement récemment décrite, les axes de plis cylindriques et les zones de cisaillement mylonitique dextre dans le compartiment inférieur de la faille de Romanet sont subparallèles à l’orogène et reflètent une phase précoce de la convergence oblique. La linéation et les stries minérales sur les plans des failles normales dans le compartiment supérieur de la faille de Romanet sont orientées orthogonalement à l’orogène et correspondent à la phase ultérieure d’exhumation induite par les effets combinés de l’érosion et de l’accrétion basale. Pour expliquer l’augmentation du degré d’exhumation le long de l’orogène du nord-ouest au sud-est dans la zone d’étude, nous proposons un modèle de partitionnement de la déformation et de l’exhumation différentielle résultant des variations longitudinales du raccourcissement et de l’érosion dans un contexte de convergence oblique.


1997 ◽  
Vol 41 (01) ◽  
pp. 69-80
Author(s):  
Mark D. Bracco ◽  
Tomasz Wierzbicki

This paper studies the cutting by a wedge of advanced double hull (ADH) small-scale models. A total of six cutting experiments were performed with six different wedge geometries. Complex deformation patterns observed in the damaged specimens were simplified to obtain a closed-form upper bound for the steady-state cutting force. The ADH steady-state cutting force solution varied from 6% above to 12% below the experimental mean steady-state force. The absolute average error is 5%.


2016 ◽  
Vol 5 (1) ◽  
pp. 76 ◽  
Author(s):  
Benjamin Patrick Hooks

<span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">Three-dimensional thermo-mechanical numerical simulations of the ongoing Yakutat–North America collision are used to identify the role of surface processes in triggering localized rapid uplift, exhumation, and strain observed within the St. Elias orogen of southern Alaska. Thermochronological data reveal localized rapid exhumation associated with the Seward-Malaspina and Hubbard Glaciers within a tectonic corner structure where transpressional motion to the south along the Fairweather Fault system transitions to shortening to the north and west within the active fold-and-thrust belt of the St. Elias orogen. The modeled deformation patterns are characteristic of oblique convergence within a tectonic corner, recording the transition from simple shear to contractional strain within a zone spatially consistent with the highest exhumation rates suggesting the corner geometry is the primary control of strain partitioning.</span><span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">The relative roles of surface-related processes versus tectonics-related processes in the development of this pattern of deformation were tested with the inclusion of an erosional surface model. The presence of surface processes enhanced the uplift and development of a localized rapid exhumation. When spatially and temporally erosion models are employed, the location of maxima is shifted in response. This indicates that efficient erosion, and resultant deposition and material advection can influence the localization of strain and uplift.</span>


2008 ◽  
Vol 30 (2) ◽  
pp. 220-236 ◽  
Author(s):  
H. Alsleben ◽  
P.H. Wetmore ◽  
K.L. Schmidt ◽  
S.R. Paterson ◽  
E.A. Melis

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 659-672 ◽  
Author(s):  
Shahriar Sadeghi ◽  
Ali Yassaghi

Abstract. Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj–Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil–Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Pierre Mueller ◽  
Matteo Maino ◽  
Silvio Seno

This paper reports the results of a field-based structural investigation of a well-exposed paleo-accretionary prism, which experienced complex deformation in a low-grade metamorphic setting. Field analyses focused on the description of structural fabrics, with the main emphasis upon parameters like the orientation, style and kinematics of foliations, folds and shear zones. We address the research to the south-westernmost part of the Alpine chain, the Ligurian Alps, where, despite their origin as turbidite sequences deposited into the closing Alpine Tethys Ocean, the Helminthoid Flysch Nappes are presently distributed in the outer part of the chain, above the foreland. The new dataset highlights different deformation patterns related to the different spatial distribution of the flysch units. This regional-scale partitioning of strain is hence associated with progressive deformation within a two-stage geodynamic evolution. Correlations among the different orogenic domains allow the proposal of a kinematic model that describes the motion of the Helminthoid Flysch from the inner to the outer part of the orogen, encompassing the shift from subduction- to collision-related Alpine geodynamic phases.


2021 ◽  
Author(s):  
Jyoti Das ◽  
Kathakali Bhattacharyya

&lt;p&gt;In a fold-thrust belt (FTB), penetrative strain within thrust sheets vary in its magnitude, orientation and type. Addressing variation in magnitude and orientation of strain from major thrust sheets in a FTB, both along the transport direction and along-strike, enable us to understand the complexity of strain partitioning during orogeny. Tectonic windows provide an opportunity to understand the impact of footwall structures on finite strain geometry and orientations of the overlying thrust sheets. In this study, we investigate how penetrative strain is partitioned from the internal to the external major thrust sheets in the Siang window in far-eastern Arunachal Himalayan FTB. We also compare these results with similar thrust sheets from well preserved tectonic windows in the eastern Himalaya, i.e., the Teesta window of the Sikkim and Kuru Chu window of the Bhutan Himalayan FTB.&lt;/p&gt;&lt;p&gt;We conduct finite strain analysis on quartz grains using R&lt;sub&gt;f&lt;/sub&gt;-&amp;#966;, normalized Fry and Shape Matrix Eigenvector methods. The studied lithologies are gneiss for the internal Pelling-Munsiari-Bomdilla thrust (PT) sheet, while quartzite and sandstone dominantly comprise the external Main Boundary thrust (MBT) and the Main Frontal thrust (MFT) sheets. The rocks north of the PT sheet are not accessible. Results from this study indicate that all the studied rocks record an overall flattening strain. Magnitude of the finite penetrative strain decreases from the internal PT sheet to the external MBT, MFT sheets in the Siang window. The long axes of the finite strain ellipsoids (X) generally have a low plunge and vary in bearing, irrespective of the structural positions of the different thrust sheets. Finite strain ellipses are folded along with the thrust sheets indicating that the penetrative strain developed prior to folding of the thrust sheets. The results also indicate that the footwall structures affect the strain geometry in the interior part of the Himalayan wedge. The grain scale shortening percentage is highest for internal PT sheet and it progressively decreases towards the external MFT sheet. The results indicate greater contribution of thrust-parallel stretch than thrust-perpendicular component, in both internal and external thrust sheets in the Siang window. Preliminary results also suggest that the strain magnitude and grain-scale shortening percentage are the lowest, and orientations of X-axes are more variable with respect to the regional transport direction in the far-eastern Siang window as compared to the other westerly lying regional transects of the Himalayan FTB.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document