scholarly journals The effect of soil properties on zinc lability and solubility in soils of Ethiopia – an isotopic dilution study

SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 255-268
Author(s):  
Abdul-Wahab Mossa ◽  
Dawd Gashu ◽  
Martin R. Broadley ◽  
Sarah J. Dunham ◽  
Steve P. McGrath ◽  
...  

Abstract. Zinc (Zn) deficiency is a widespread nutritional problem in human populations, especially in sub-Saharan Africa (SSA). The Zn concentration of crops consumed depends in part on the Zn status of the soil. Improved understanding of factors controlling the phyto-availability of Zn in soils can contribute to potential agronomic interventions to tackle Zn deficiency, but many soil types in SSA are poorly studied. Soil samples (n=475) were collected from a large part of the Amhara Region of Ethiopia, where there is widespread Zn deficiency. Zinc status was quantified by measuring several fractions, including the pseudo-total (aqua regia digestion; ZnTot), available (DTPA (diethylenetriamine pentaacetate) extractable; ZnDTPA), soluble (dissolved in 0.01 M Ca(NO3); ZnSoln) and isotopically exchangeable Zn, using the enriched stable Zn isotope 70Zn (ZnE). Soil geochemical properties were assessed for their influence on Zn lability and solubility. A parameterized geochemical assemblage model (Windermere Humic Aqueous Model – WHAM) was also employed to predict the solid phase fractionation of Zn in tropical soils rather than using sequential chemical extractions. ZnTot ranged from 14.1 to 291 mg kg−1 (median = 100 mg kg−1), whereas ZnDTPA in the majority of soil samples was less than 0.5 mg kg−1, indicating widespread phyto-available Zn deficiency in these soils. The labile fraction of Zn in soil (ZnE as % ZnTot) was low, with median and mean values of 4.7 % and 8.0 %, respectively. Labile Zn partitioning between the solid and the solution phases of soil was highly pH dependent, where 94 % of the variation in the partitioning coefficient of 70Zn was explained by soil pH. Similarly, 86 % of the variation in ZnSoln was explained by soil pH. Zinc distribution between adsorbed ZnE and ZnSoln was controlled by pH. Notably, Zn isotopic exchangeability increased with soil pH. This contrasts with literature on contaminated and urban soils and may arise from covarying factors, such as contrasting soil clay mineralogy across the pH range of the soils used in the current study. These results could be used to improve agronomic interventions to tackle Zn deficiency in SSA.

2021 ◽  
Author(s):  
Abdul W. Mossa ◽  
Dawd Gashu ◽  
Martin R. Broadley ◽  
Sarah J. Dunham ◽  
Steve P. McGrath ◽  
...  

Abstract. Zinc (Zn) deficiency is a widespread nutritional problem in human populations, especially in sub-Saharan Africa (SSA). The Zn concentration of crops consumed depends in part on the Zn status of soil. Improved understanding of factors controlling the phyto-availability of Zn in soils can contribute to potential agronomic interventions to tackle Zn deficiency, although there are major knowledge gaps for many soil types in SSA. Soil samples (n = 475) were collected from a large part of the Amhara Region of Ethiopia where there is widespread Zn deficiency. Zinc status was quantified by measuring several fractions: pseudo-total (Aqua-Regia digestion; ZnTot), available (DTPA-extractable; ZnDTPA), soluble (dissolved in 0.01 M Ca(NO3); ZnSoln) and isotopically exchangeable Zn using the enriched stable Zn isotope 70Zn (ZnE). Soil geochemical properties were assessed for their influence on Zn lability and solubility. ZnTot ranged from 14.1 to 291 mg kg−1 (median = 100 mg kg−1) whereas ZnDTPA in the majority of soil samples was less than 0.5 mg kg−1 indicating widespread phytoavailable Zn deficiency in these soils. The labile fraction of Zn in soil (ZnE as %ZnTot) was low, with median and mean values of 4.7 % and 8.0 % respectively. Labile Zn partitioning between the solid and the solution phases of soil was highly pH-dependent where 94 % of the variation in the partitioning coefficient of 70Zn was explained by soil pH. Similarly, 86 % of the variation in ZnSoln was explained by soil pH. Zinc distribution between adsorbed ZnE and ZnSoln was pH controlled. Notably, Zn isotopic exchangeability increased with soil pH. This contrasts with literature on contaminated and urban soils and may arise from covarying factors such as contrasting soil clay mineralogy across the pH range of the soils used in the current study. These results could be used to improve agronomic interventions to tackle Zn deficiency in SSA.


2014 ◽  
Vol 11 (6) ◽  
pp. 690 ◽  
Author(s):  
Lingchen Mao ◽  
Elizabeth H. Bailey ◽  
Jonathan Chester ◽  
Joseph Dean ◽  
E. Louise Ander ◽  
...  

Environmental context There is growing concern that lead in the environment may cause adverse health effects in human populations. We investigated the combined use of isotopic abundance and isotopic dilution to show how the origins of soil Pb and soil characteristics affect lability. Soil pH and soil Pb content are the dominant controls on Pb lability; the lability of recent petrol-derived Pb is similar to that of other sources in urban soils but greater than geogenic Pb in rural roadside topsoils. Abstract Lability of lead in soils is influenced by both soil properties and source(s) of contamination. We investigated factors controlling Pb lability in soils from (i) land adjacent to a major rural road, (ii) a sewage processing farm and (iii) an archive of the geochemical survey of London. We measured isotopically exchangeable Pb (E-values; PbE), phase fractionation of Pb by a sequential extraction procedure (SEP) and inferred source apportionment from measured Pb isotopic ratios. Isotopic ratios (206Pb/207Pb and 208Pb/207Pb) of total soil Pb fell on a mixing line between those of petrol and UK coal or Pb ore. The main determinant of the isotopically exchangeable Pb fraction (%E-value) was soil pH: %E-values decreased with increasing pH. In rural roadside topsoils, there was also evidence that petrol-derived Pb remained more labile (35%) than Pb from soil parent material (27%). However, in biosolid-amended and London soils, %E-values were low (~25%), covered a restricted range and showed no clear evidence of source-dependent lability.


2017 ◽  
Vol 41 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Estêvão Vicari Mellis ◽  
José Carlos Casagrande ◽  
Marcio Roberto Soares

ABSTRACT Although nickel (Ni) has both important potential benefits and toxic effects in the environment, its behavior in tropical soils has not been well studied. Nickel adsorption-desorption in topsoil and subsoil samples of an acric Oxisol was studied at three pH values (from 3.0 to 8.0). Adsorption-desorption isotherms were elaborated from experiments with increasing Ni concentration (5 to 100 mg L-1), during 0, 4, and 12 weeks, using CaCl2 0.01 and 0.1 M as electrolytic support in order to also verify the effect of Ni-soil time contact and of ionic strength on the reaction. Experimental results of Ni adsorption fitted Langmuir model, which indicated that maximum Ni adsorption (71,440 mg kg-1) occurred at subsoil, after 12 weeks. Nickel affinity (KL) was also greater at subsoil (1.0 L kg-1). The Ni adsorption in the topsoil samples was higher, due to its lower point of zero salt effect (PZSE) and higher organic matter content. The increase in soil pH resulted in the increase of Ni adsorption. Nickel desorbed less from soil samples incubated for 4 or 12 weeks, suggesting that Ni interactions with colloidal particles increase over time. The amount of Ni desorbed increased with increasing ionic strength in both the topsoil and subsoil soil samples. Finally, adsorption-desorption hysteresis was clearly observed. Soil pH, ionic strength of soil solution and the Ni-soil contact time should be considered as criteria for selecting the areas for disposal of residues containing Ni or to compose remediation strategies for acric soils contaminated with Ni.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258166
Author(s):  
A. K. Shukla ◽  
S. K. Behera ◽  
R. Tripathi ◽  
C. Prakash ◽  
A. K. Nayak ◽  
...  

Understanding the spatial spreading patterns of plant-available sulphur (S) (AS) and plant-available micronutrients (available zinc (AZn), available iron (AFe), available copper (ACu), available manganese (AMn) and available boron (AB)) in soils, especially in coastal agricultural soils subjected to various natural and anthropogenic activities, is vital for sustainable crop production by adopting site-specific nutrient management (SSNM) strategies. We studied the spatial distribution patterns of AS, AZn, AFe, ACu, AMn, and AB in cultivated soils of coastal districts of India using geostatistical approaches. Altogether 39,097 soil samples from surface (0 to 15 cm depth) layers were gathered from farm lands of 68 coastal districts. The analysis of soil samples was carried out for soil pH, electrical conductivity (EC), soil organic carbon (SOC) and AS, AZn, AFe, ACu, AMn, and AB. Soil pH, EC and SOC varied from 3.70 to 9.90, 0.01 to 7.45 dS m-1 and 0.02 to 3.74%, respectively. The concentrations of AS, AZn, AFe, ACu, AMn, and AB varied widely in the study area with their corresponding mean values were 37.4±29.4, 1.50±1.53, 27.9±35.1, 2.14±1.74, 16.9±18.4 and 1.34±1.52 mg kg-1, respectively. The coefficient of variation values of analyzed soil parameters varied from 14.6 to 126%. The concentrations of AS, AZn, AFe, ACu, AMn, and AB were negatively and significantly correlated with soil pH and positively and significantly correlated with SOC. The geostatistical analysis indicated stable, Gaussian and exponential best-fit semivariogram models with moderate to strong spatial dependence for available nutrients. The generated spatial spreading maps revealed different distribution patterns for AS, AZn, AFe, ACu, AMn, and AB. There were variations in spatial spreading patterns of AS, AZn, AFe, ACu, AMn, and AB in east- and west-coastal area. About 62, 35, 12, 0.4, 23 and 45% of the study area had deficiency of AS, AZn, AFe, ACu, AMn, and AB, respectively. The spatial spreading maps will be highly useful for SSNM in the cultivated coastal soils of the country. This study could also be used as a base for assessing spatial spreading patterns of soil parameters in cultivated coastal areas of other parts of the world.


2009 ◽  
pp. 90-101
Author(s):  
Ian Navarrete ◽  
Salfe Macalde ◽  
Victor Asio

The influence of aggregates and rhizosphere on nutrient availability of degraded tropical soils is not yet well understood. The study evaluated differences in the nutrient characteristics between rhizosphere and non-rhizosphere soils, aggregated and homogenized soil samples, and inner and outer portions of aggregates. Soil samples were collected from a degraded upland soil in Pinabacdao, Samar, Philippines, and analyzed for selected soil properties. Results revealed that rhizosphere soil had higher organic matter (OM), available P contents, and exchangeable Ca and Mg contents than the non-rhizosphere soil but with no considerable variation in soil pH. Results also showed no differences in the chemical properties between the outer and inner portions of aggregates and that the aggregated samples slightly differed from the homogenized soil samples in terms of some chemical characteristics. Findings suggest that the standard practice of homogenizing soil sample for analysis may have limitations for fertility evaluation of degraded soils.


Author(s):  
Andes Garchitorena ◽  
Matthew H. Bonds ◽  
Jean-Francois Guégan ◽  
Benjamin Roche

This chapter provides an overview of the complex interactions between ecological and socioeconomic factors for the development and control of Buruli ulcer in Sub-Saharan Africa. We review key ecological and evolutionary processes driving the environmental persistence and proliferation of Mycobacterium ulcerans, the causative agent, within aquatic environments, as well as transmission processes from these aquatic environments to human populations. We also outline key socioeconomic factors driving the economic and health burden of Buruli ulcer in endemic regions, revealed by reciprocal feedbacks between poverty, disease transmission from exposure aquatic environments and disease progression to severe stages owing to low access to health care. The implications of such insights for disease control, both in terms of limitations of current strategies and directions for the future, are discussed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


Sign in / Sign up

Export Citation Format

Share Document