scholarly journals Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland

2016 ◽  
Vol 10 (1) ◽  
pp. 159-177 ◽  
Author(s):  
E. Magnússon ◽  
J. Muñoz-Cobo Belart ◽  
F. Pálsson ◽  
H. Ágústsson ◽  
P. Crochet

Abstract. In this paper we describe how recent high-resolution digital elevation models (DEMs) can be used to extract glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne lidar in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high-resolution lidar DEM. The lidar DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice- and snow-free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical semivariogram model, which along with the derived errors in ice- and snow-free areas were used as inputs into 1000 sequential Gaussian simulations (SGSims). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM and the 95 % confidence level of this bias. This results in bias correction varying in magnitude between 0.03 m (in 1975) and 1.66 m (in 1946) and uncertainty values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2–4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional seasonal bias correction was therefore estimated using a degree-day model to obtain the volume change between the start of 2 glaciological years (1 October). This correction was largest for the 1960 DEM, corresponding to an average elevation change of −3.5 m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume changes caused by uncertainties of the SGSim bias correction, the seasonal bias correction and the interpolation of glacier surface where data are lacking. The record shows a glacier-wide mass balance rate of Ḃ  = −0.26 ± 0.04 m w.e. a−1 for the entire study period (1946–2011). We observe significant decadal variability including periods of mass gain, peaking in 1985–1994 with Ḃ  = 0.27 ± 0.11 m w.e. a−1. There is a striking difference when Ḃ  is calculated separately for the western and eastern halves of Drangajökull, with a reduction of eastern part on average  ∼  3 times faster than the western part. Our study emphasizes the need for applying rigorous geostatistical methods for obtaining uncertainty estimates of geodetic mass balance, the importance of seasonal corrections of DEMs from glaciers with high mass turnover and the risk of extrapolating mass balance record from one glacier to another even over short distances.

2015 ◽  
Vol 9 (5) ◽  
pp. 4733-4785 ◽  
Author(s):  
E. Magnússon ◽  
J. M. C. Belart ◽  
F. Pálsson ◽  
H. Ágústsson ◽  
P. Crochet

Abstract. In this paper we describe how recent high resolution Digital Elevation Models (DEMs) can be used as constraints for extracting glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajökull ice cap, NW-Iceland. This ice cap covered an area of 144 km2 when it was surveyed with airborne LiDAR in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high resolution LiDAR DEM (2 m × 2 m cell size and vertical accuracy < 0.5 m). The LiDAR DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice and snow free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical variogram model, which along with the derived errors in ice and snow free areas were used as inputs into 1000 Sequential Gaussian Simulations (SGSim). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM. The derived bias correction, varying in magnitude between DEMs from 0.03 to 1.66 m (1946 DEM) was then applied. The simulation results were also used to calculate the 95 % confidence level of this bias, resulting in values between ±0.21 m (in 2005) and ±1.58 m (in 1946). Error estimation methods based on more simple proxies would typically yield 2–4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional bias correction was therefore estimated using a degree day model to obtain the volume change between the start of two hydrological years (1 October). This correction corresponds to an average elevation change of ~ −3 m in the worst case for 1960, or about ~ 2/3 of volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is mostly due to uncertainty of the SGSim bias correction, the uncertainty of the seasonal bias correction and the uncertainty of the interpolated glacier surface where data is lacking. The record shows a glacier-wide mass balance rate of Ḃ = −0.250 ± 0.040 m w.e. a−1 for the entire study period (1946–2011). We observe significant decadal variability including positive periods, peaking in 1985–1994 with Ḃ = 0.26 ± 0.11 m w.e. a−1. There is a striking difference if Ḃ is calculated separately for the western and eastern halves of Drangajökull, with a reduction of eastern part on average ~ 3 times faster than the western part. Our study emphasises the need of applying rigorous geostatistical methods for obtaining uncertainty estimates of geodetic mass balance, the importance of seasonal corrections of DEMs from glaciers with high mass turnover and the risk of extrapolating mass balance record from one glacier to another even over short distances.


2015 ◽  
Vol 9 (2) ◽  
pp. 565-585 ◽  
Author(s):  
H. Hannesdóttir ◽  
H. Björnsson ◽  
F. Pálsson ◽  
G. Aðalgeirsdóttir ◽  
Sv. Guðmundsson

Abstract. Area and volume changes and the average geodetic mass balance of the non-surging outlet glaciers of the southeast Vatnajökull ice cap, Iceland, during different time periods between ~ 1890 and 2010, are derived from a multi-temporal glacier inventory. A series of digital elevation models (DEMs) (~ 1890, 1904, 1936, 1945, 1989, 2002, 2010) are compiled from glacial geomorphological features, historical photographs, maps, aerial images, DGPS measurements and a lidar survey. Given the mapped basal topography, we estimate volume changes since the end of the Little Ice Age (LIA) ~ 1890. The variable volume loss of the outlets to similar climate forcing is related to their different hypsometry, basal topography, and the presence of proglacial lakes. In the post-LIA period, the glacierized area decreased by 164 km2 (or from 1014 to 851 km2) and the glaciers had lost 10–30 % of their ~ 1890 area by 2010 (anywhere from 3 to 36 km2). The glacier surface lowered by 150–270 m near the terminus and the outlet glaciers collectively lost 60 ± 8 km3 of ice, which is equivalent to 0.15 ± 0.02 mm of sea-level rise. The volume loss of individual glaciers was in the range of 15–50%, corresponding to a geodetic mass balance between −0.70 and −0.32 m w.e. a−1. The annual rate of mass change during the post-LIA period was most negative in 2002–2010, on average −1.34 ± 0.12 m w.e. a−1, which is among the most negative mass balance values recorded worldwide in the early 21st century.


2009 ◽  
Vol 50 (50) ◽  
pp. 119-125 ◽  
Author(s):  
Torborg Haug ◽  
Cecilie Rolstad ◽  
Hallgeir Elvehøy ◽  
Miriam Jackson ◽  
Ivar Maalen-Johansen

AbstractThe geodetic mass balance of the western Svartisen ice cap in northern Norway is determined, in this work, from photogrammetry on vertical aerial photographs taken in 1968, 1985 and 2002. The existing 1968 digital terrain model (DTM) was generated using analogue photogrammetry, and the 1985 and 2002 DTMs are newly generated using digital photogrammetry. The geodetic mass balance for 1968–85 is –2.6±0.8mw.e., and for 1985–2002 it is –2.0±1.6mw.e. The area of western Svartisen decreased from 190 km2 in 1968, to 187 km2 in 1985 and to 184 km2 in 2002. The outlet glacier Flatisen in the southeast retreated 1700 m over the two periods. The geodetic mass balance is also determined for Engabreen drainage basin, as –2.1±0.9mw.e. for the first period, and –0.3±2.4mw.e. for the second. The results for Engabreen are compared to traditional mass balances, and the large deviations cannot be explained from uncertainties determined for the geodetic method. The assessed errors contributing to the uncertainty in the geodetic mass balance are elevation errors, uncertainties from the applied melt correction, and the use of Sorge’s law, assuming constant snow thickness and density.


2009 ◽  
Vol 55 (192) ◽  
pp. 666-680 ◽  
Author(s):  
C. Rolstad ◽  
T. Haug ◽  
B. Denby

AbstractEstimates of glacier mass balance using geodetic methods can differ significantly from estimates using direct glaciological field-based measurements. To determine if such differences are real or methodological, there is a need to improve uncertainty estimates in both methods. In this paper, we focus on the uncertainty of geodetic methods and describe a geostatistical technique that takes into account the spatial correlation of the elevation differences when calculating spatially averaged elevation changes. We apply this method to the western Svartisen ice cap, Norway, using elevation differences from the surrounding bedrock derived from stereophotogrammetry. We show that the uncertainty is not only dependent on the standard error of the individual elevation differences but is also dependent on the size of the averaging area and the scale of the spatial correlation. To assess if the geostatistical analysis made over bedrock is applicable to glacier surfaces, we use concurrent photogrammetrical and laser scanning data from bedrock and a range of glacier surfaces to evaluate the dependency of the geostatistical analysis on the surface type. The estimated geodetic mass balance, and its uncertainty, is −2.6 ± 0.9 m w.e. for the period 1968–85, and −2.0 ± 2.2 m w.e. for 1985–2002.


2017 ◽  
Vol 11 (2) ◽  
pp. 741-754 ◽  
Author(s):  
Monika Wittmann ◽  
Christine Dorothea Groot Zwaaftink ◽  
Louise Steffensen Schmidt ◽  
Sverrir Guðmundsson ◽  
Finnur Pálsson ◽  
...  

Abstract. Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ∼  1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m−2. At the station located higher on the glacier ( ∼  1525 m a.s.l.), the model produced nine dust events, with one single event causing  ∼  5 g m−2 of dust deposition and a total deposition of  ∼  10 g m−2 yr−1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.


2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2019 ◽  
Vol 13 (7) ◽  
pp. 1889-1909 ◽  
Author(s):  
Nico Mölg ◽  
Tobias Bolch ◽  
Andrea Walter ◽  
Andreas Vieli

Abstract. Debris-covered glaciers generally exhibit large, gently sloping, slow-flowing tongues. At present, many of these glaciers show high thinning rates despite thick debris cover. Due to the lack of observations, most existing studies have neglected the dynamic interactions between debris cover and glacier evolution over longer time periods. The main aim of this study is to reveal such interactions by reconstructing changes of debris cover, glacier geometry, flow velocities, and surface features of Zmuttgletscher (Switzerland), based on historic maps, satellite images, aerial photographs, and field observations. We show that debris cover extent has increased from ∼13 % to ∼32 % of the total glacier surface since 1859 and that in 2017 the debris is sufficiently thick to reduce ablation compared to bare ice over much of the ablation area. Despite the debris cover, the glacier-wide mass balance of Zmuttgletscher is comparable to that of debris-free glaciers located in similar settings, whereas changes in length and area have been small and delayed by comparison. Increased ice mass input in the 1970s and 1980s resulted in a temporary velocity increase, which led to a local decrease in debris cover extent, a lowering of the upper boundary of the ice-cliff zone, and a strong reduction in ice-cliff area, indicating a dynamic link between flow velocities, debris cover, and surface morphology. Since 2005, the lowermost 1.5 km of the glacier has been quasi-stagnant, despite a slight increase in the surface slope of the glacier tongue. We conclude that the long-term glacier-wide mass balance is mainly governed by climate. The debris cover governs the spatial pattern of elevation change without changing its glacier-wide magnitude, which we explain by the extended ablation area and the enhanced thinning in regions with thin debris further up-glacier and in areas with abundant meltwater channels and ice cliffs. At the same time rising temperatures lead to increasing debris cover and decreasing ice flux, thereby attenuating length and area losses.


2019 ◽  
Vol 65 (252) ◽  
pp. 565-579 ◽  
Author(s):  
WILLIAM KOCHTITZKY ◽  
HESTER JISKOOT ◽  
LUKE COPLAND ◽  
ELLYN ENDERLIN ◽  
ROBERT MCNABB ◽  
...  

ABSTRACTDonjek Glacier has an unusually short and regular surge cycle, with eight surges identified since 1935 from aerial photographs and satellite imagery with a ~12 year repeat interval and ~2 year active phase. Recent surges occurred during a period of long-term negative mass balance and cumulative terminus retreat of 2.5 km since 1874. In contrast to previous work, we find that the constriction where the valley narrows and bedrock lithology changes, 21 km from the terminus, represents the upper limit of surging, with negligible surface speed or elevation change up-glacier from this location. This positions the entire surge-type portion of the glacier in the ablation zone. The constriction geometry does not act as the dynamic balance line, which we consistently find at 8 km from the glacier terminus. During the 2012–2014 surge event, the average lowering rate in the lowest 21 km of the glacier was 9.6 m a−1, while during quiescence it was 1.0 m a−1. Due to reservoir zone refilling, the ablation zone has a positive geodetic balance in years immediately following a surge event. An active surge phase can result in a strongly negative geodetic mass balance over the surge-type portion of the glacier.


2019 ◽  
Vol 65 (251) ◽  
pp. 395-409 ◽  
Author(s):  
JOAQUÍN M. C. BELART ◽  
EYJÓLFUR MAGNÚSSON ◽  
ETIENNE BERTHIER ◽  
FINNUR PÁLSSON ◽  
GUðFINNA AÐALGEIRSDÓTTIR ◽  
...  

ABSTRACTMass-balance measurements of Icelandic glaciers are sparse through the 20th century. However, the large archive of stereo images available allows estimates of glacier-wide mass balance ($\dot{B}$) in decadal time steps since 1945. Combined with climate records, they provide further insight into glacier–climate relationship. This study presents a workflow to process aerial photographs (1945–1995), spy satellite imagery (1977–1980) and modern satellite stereo images (since 2000) using photogrammetric techniques and robust statistics in a highly automated, open-source pipeline to retrieve seasonally corrected, decadal glacier-wide geodetic mass balances. In our test area, Eyjafjallajökull (S-Iceland, ~70 km2), we obtain a mass balance of $<![CDATA[ $ \dot{\curr B}_{\curr 1945}^{\curr 2014} \curr = -0.27 \pm 0.03\,{\rm \curr m\ w}{\rm. \curr e}{\rm.} {\rm \curr a}^{{\rm \ndash \curr 1}}$, with a maximum and minimum of $\dot{\curr B}_{\curr 1984}^{\curr 1989} \curr = 0.77 \curr \pm 0.19\,{\rm \curr m\ \curr w}{\rm\curr . e}{\rm\curr .} {\rm\curr a}^{{\rm\curr \ndash 1}}$ and $\dot{\curr B}_{\curr 1994}^{\curr 1998}\curr = -1.94 \curr \pm 0.34\,{\rm \curr m\ w}{\rm\curr . e}{\rm\curr .} {\rm \curr a}^{{\rm\curr \ndash 1}}$, respectively, attributed to climatic forcing, and $\dot{\curr B}_{\curr 2009}^{\curr 2010} \curr = -3.39{\rm \;} \curr \pm {\rm \;} \curr 0.43\,{\rm \curr m\ w}{\rm\curr . e}{\rm\curr .} {\rm\curr a}^{{\rm\curr \ndash 1}}$, mostly caused by the April 2010 eruption. The reference-surface mass balances correlate with summer temperature and winter precipitation, and linear regression accounts for 80% of the mass-balance variability, yielding a static sensitivity of mass balance to summer temperature and winter precipitation of − 2.1 ± 0.4 m w.e.a–1K–1 and 0.5 ± 0.3 m w.e.a–1 (10%)–1, respectively. This study serves as a template that can be used to estimate the mass-balance changes and glaciers' response to climate.


2016 ◽  
Author(s):  
Joaquín M. C. Belart ◽  
Etienne Berthier ◽  
Eyjólfur Magnússon ◽  
Leif S. Anderson ◽  
Finnur Pálsson ◽  
...  

Abstract. Sub-meter resolution satellite stereo images allow the generation of high resolution, accurate digital elevation models (DEMs). Repeated acquisitions of stereo images from Pléiades, in October 2014 and May 2015, and from WorldView2 (WV2), in February 2015, over Drangajökull ice cap (NW-Iceland) are used to estimate the geodetic glacier-wide mass balance on sub-annual time scales. Relative adjustment of the DEMs is performed with and without a pre-existing lidar DEM as source of ground control points (GCPs), and resulting statistics in snow-free and ice-free areas reveal similar vertical accuracy


Sign in / Sign up

Export Citation Format

Share Document