scholarly journals The statistics of blowing snow occurrences from multi-year autonomous snow flux measurements in the French Alps

2021 ◽  
Author(s):  
Zhipeng Xie ◽  
Yaoming Ma ◽  
Weiqiang Ma ◽  
Zeyong Hu ◽  
Genhou Sun

Abstract. Wind-driven snow transport has important implications for the spatial-temporal heterogeneity of snow distribution and snowpack evolution in mountainous areas, such as the European Alps. The climatological and hydrological significance of this region have been extensively investigated using satellite and numerical models. However, knowledge of the spatiotemporal variability of blowing snow is in its infancy because of inaccuracies in satellite-based blowing snow algorithms and the absence of quantitative assessments. Here, we present the spatiotemporal variability and magnitude of blowing snow events, and explore the potential links with ambient meteorological conditions using near surface blowing snow observations from the ISAW outdoor environmental monitoring network. Results show frequent occurrence of blowing snow, and contrasting seasonal variability in the French Alps. On average, monthly blowing snow days range from 5.0 to 14.3 days when using the snow flux threshold of 0.1 g m−2 s−1. The minimum and maximum frequencies of blowing snow days are observed in September and January, respectively, accounting for between 16.7 % and 46.1 % of the month. However, the frequency of monthly blowing snow days varies widely between stations, and this variability is more pronounced at lower threshold levels. Blowing snow events with relatively high magnitudes of snow mass flux (1.0 g m−2 s−1) occur more frequently than low-intensity events (snow mass flux ranges from 0.1 to 0.5 g m−2 s−1). By imposing a minimum duration of 4 h, the monthly cumulative hours with blowing snow occurrences can be up to 255 hours, but show significant seasonal and spatial variability. The considerable variability observed across this region can be explained by contrasting local climate (particularly wind speed and air temperature), snowpack properties, topography and vegetation. The snow-mass transported during relatively high magnitude blowing snow events accounts for about 90 % of all the transported snow mass, highlighting the importance of major events. Blowing snow events that occur with concurrent snowfall are generally associated with intense snow transport. Transport of wet snow and dry snow is mostly concentrated in the range of 0.1 to 0.5 g m−2 s−1 and 0.5 to 1.0 g m−2 s−1, respectively. Understanding the spatiotemporal variability of blowing snow occurrences and the potential links with ambient meteorological conditions is critical for constructing effective avalanche disaster warning systems, and for promoting quantitative evaluation and development of satellite retrieval algorithms and blowing snow models.

2009 ◽  
Vol 48 (3) ◽  
pp. 429-449 ◽  
Author(s):  
Yves Durand ◽  
Martin Laternser ◽  
Gérald Giraud ◽  
Pierre Etchevers ◽  
Bernard Lesaffre ◽  
...  

Abstract Since the early 1990s, Météo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratification, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions in France. Given the lack of sufficient directly observed long-term snow data, this “SAFRAN”–Crocus–“MEPRA” (SCM) model chain, usually applied to operational avalanche forecasting, has been used to carry out and validate retrospective snow and weather climate analyses for the 1958–2002 period. The SAFRAN 2-m air temperature and precipitation climatology shows that the climate of the French Alps is temperate and is mainly determined by atmospheric westerly flow conditions. Vertical profiles of temperature and precipitation averaged over the whole period for altitudes up to 3000 m MSL show a relatively linear variation with altitude for different mountain areas with no constraint of that kind imposed by the analysis scheme itself. Over the observation period 1958–2002, the overall trend corresponds to an increase in the annual near-surface air temperature of about 1°C. However, variations are large at different altitudes and for different seasons and regions. This significantly positive trend is most obvious in the 1500–2000-m MSL altitude range, especially in the northwest regions, and exhibits a significant relationship with the North Atlantic Oscillation index over long periods. Precipitation data are diverse, making it hard to identify clear trends within the high year-to-year variability.


2020 ◽  
Author(s):  
François Tuzet ◽  
Marie Dumont ◽  
Ghislain Picard ◽  
Maxim Lamare ◽  
Didier Voisin ◽  
...  

Abstract. The presence of light-absorbing particles (LAPs) in snow leads to a decrease in shortwave albedo, affecting the surface energy budget. Precisely quantifying the impacts of LAPs on snowpack evolution is crucial to characterise the spatio-temporal variability of snowmelt and assess snow albedo feedbacks in detail. However, the understanding of the impacts of LAPs is hampered by the lack of dedicated datasets, as well as the scarcity of models able to represent the interactions between LAPs and snow metamorphism. The present study aims to address both these limitations by introducing a survey of LAP concentrations over two snow seasons in the French Alps, as well as an estimation of their impacts based on the Crocus snowpack model that represents the complex interplays between LAP dynamics and snow metamorphism. First, we present a unique dataset collected at the Col du Lautaret (2058 m a.s.l; French Alps) for the two snow seasons 2016–2017 and 2017–2018. This dataset consists of spectral albedo measurements (manual and automated), vertical profiles of snow specific surface area (SSA), density, and concentrations of refractive Black Carbon (rBC), Elemental Carbon (EC) and mineral dust. Spectral albedo data are processed to estimate near-surface SSA and LAP absorption-equivalent concentrations near the surface of the snowpack. These estimates are then compared to chemical measurements of dust and BC concentrations, as well as to SSA measurements acquired by near-infrared reflectometry. Our dataset highlights large discrepancies between the two measurement techniques of BC concentrations, with EC concentrations being one order of magnitude higher than rBC measurements. In view of LAP absorption inferred from albedo measurements, the mass absorption efficiency (MAE) of BC used in our study (11.25 g m−2 at 550 nm) is more appropriate for EC measurements than for rBC ones. Second, we present ensemble snowpack simulations of ESCROC – the multi-physics version of the detailed snowpack model Crocus – forced with in-situ meteorological data as well as dust and BC deposition fluxes from the ALADIN-Climate atmospheric model. The results of these simulations are compared to the near-surface properties estimated from automatic albedo measurements, showing that the temporal variations of near-surface LAP concentration and SSA are correctly reproduced. The impact of dust and BC on our simulations is estimated by comparing this ensemble to a similar ensemble that does not account for LAPs. The seasonal radiative forcing of LAPs is 1.33 times higher for the 2017–2018 snow season than for the 2016–2017 one, highlighting a strong variability between these two seasons. However, the shortening of the snow season caused by LAPs are similar with 10 ± 5 and 11 ± 1 days for the first and the second snow seasons respectively. This counter-intuitive result is attributed to two small snowfalls at the end of the first season and highlights the importance to account for meteorological conditions to correctly predict the impact of LAPs. The strong variability of season shortening caused by LAPs in the multi-physics ensemble for the first season also points out the sensitivity of model-based estimations of LAP impact to modelling uncertainties of other processes. Finally, the indirect impact of LAPs (i.e. the enhancement of energy absorption due to acceleration of the metamorphism by LAPs) is negligible for the two years considered here, contrary to what was found in previous studies for other sites. This finding is mainly attributed to the meteorological conditions of the two studied snow seasons.


2018 ◽  
Vol 19 (2) ◽  
pp. 305-320 ◽  
Author(s):  
N. O. Aksamit ◽  
J. W. Pomeroy

Abstract Blowing snow particle transport responds to wind motions across many length and time scales. This coupling is nonlinear by nature and complicated in atmospheric flows where eddies of many sizes are superimposed. In mountainous terrain, wind flow descriptions are further complicated by topographically influenced or enhanced flows. To improve the current understanding and modeling of blowing snow transport in complex terrain, statistically significant timing and frequencies of wind–snow coupling were identified in high-frequency observations of surface blowing snow and near-surface turbulence from a mountain field site in the Canadian Rockies. Investigation of the mechanisms influencing near-surface, high-frequency turbulence and snow concentration fluctuations provided strong evidence for amplitude modulation from large-scale motions. The large-scale atmospheric motions modulating near-surface turbulence and snow transport were then compared to specific quadrant analysis structures recently identified as relevant for outdoor blowing snow transport. The results suggest that large atmospheric structures modulate the amplitude of high-frequency turbulence and modify turbulence statistics typically used to model blowing snow. Additionally, blowing snow was preferentially redistributed under the footprint of these same sweep motions, with both low- and high-frequency coherence increasing in their presence.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
F. Guarnieri ◽  
F. Calastrini ◽  
C. Busillo ◽  
G. Messeri ◽  
B. Gozzini

The mixing layer height (MLH) is a crucial parameter in order to investigate the near surface concentrations of air pollutants. The MLH can be estimated by measurements of some atmospheric variables, by indirect estimates based on trace gases concentration or aerosol, or by numerical models. Here, a modelling approach is proposed. The developed modelling system is based on the models WRF-ARW and CALMET. This system is applied on Firenze-Prato-Pistoia area (Central Italy), during 2010, and it is compared with in situ measurements. The aim of this work is to evaluate the use of MLH model estimates to characterize the critical episodes for PM10 in a limited area. In order to find out the meteorological conditions predisposing accumulation of PM10 in the atmosphere’s lower level, some indicators are used: daily mean wind speed, cumulated rainfall, and mean MLH estimates from CALMET model. This indicator is linked to orography, which has important consequences on local weather dynamics. However, during critical events the local emission sources are crucial to the determination of threshold exceeding of PM10. Results show that the modelled MLH, together with cumulative rainfall and wind speed, can identify the meteorological conditions predisposing accumulation of air pollutant at ground level.


2010 ◽  
Vol 7 (1) ◽  
pp. 929-970
Author(s):  
J. Yang ◽  
M. K. Yau ◽  
X. Fang ◽  
J. W. Pomeroy

Abstract. Many field studies have shown that surface sublimation, and blowing snow transport and sublimation have significant influences on the snow mass budget in many high-latitude regions. We developed a coupled triple-moment blowing snow-atmospheric modeling system to study the influence of these processes on a seasonal time scale over the Northern Hemisphere. Two simulations were performed. The first is a 5 month simulation for comparison with snow survey measurements over a Saskatchewan site to validate the modeling system. The second simulation covers the 2006/2007 winter period to study the snow mass budget over the Northern Hemisphere. The results show that surface sublimation is significant in Eurasian Continent and the eastern region of North America, reaching a maximum value of 200 mm SWE (Snow Water Equivalent). Over the Arctic Ocean and Northern Canada, surface deposition with an average value of 30 mm SWE was simulated. Blowing snow sublimation was found to return up to 50 mm SWE back to the atmosphere over the Arctic Ocean while the divergence of blowing snow transport contributes only a few mm SWE to the change in snow mass budget. The results were further stratified in 10 degree latitudinal bands. The results show that surface sublimation decreases with an increase in latitude while blowing snow sublimation increases with latitude. Taken together, the surface sublimation and blowing snow processes was found to distribute 23% to 52% of winter precipitation over the three month winter season.


2017 ◽  
Author(s):  
Stephen P. Palm ◽  
Vinay Kayetha ◽  
Yuekui Yang ◽  
Rebecca Pauly

Abstract. Blowing snow processes commonly occur over the earth's ice sheets when near surface wind speed exceeds a threshold value. These processes play a key role in the sublimation and re-distribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP lidar aboard the CALIPSO satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture re-analysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that Antarctica average integrated blowing snow sublimation is about 393.4 ± 138 Gt yr−1 which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Megatons km−1 yr−1 over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.68 Gt yr−1. These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface-mass budget over Antarctica.


2010 ◽  
Vol 14 (6) ◽  
pp. 1063-1079 ◽  
Author(s):  
J. Yang ◽  
M. K. Yau ◽  
X. Fang ◽  
J. W. Pomeroy

Abstract. Many field studies have shown that surface sublimation and blowing snow transport and sublimation have significant influences on the snow mass budget in many high latitude regions. We developed a coupled triple-moment blowing snow-atmospheric modeling system to study the influence of these processes on a seasonal time scale over the Northern Hemisphere. Two simulations were performed. The first is a 5 month simulation for comparison with snow survey measurements over a Saskatchewan site to validate the modeling system. The second simulation covers the 2006/2007 winter period to study the snow mass budget over the Northern Hemisphere. The results show that surface sublimation is significant in Eurasian Continent and the eastern region of North America, reaching a maximum value of 200 mm SWE (Snow Water Equivalent). Over the Arctic Ocean and Northern Canada, surface deposition with an average value of 30 mm SWE was simulated. Blowing snow sublimation was found to return up to 50 mm SWE back to the atmosphere over the Arctic Ocean, while the divergence of blowing snow transport contributes only a few mm SWE to the change in snow mass budget. The results were further stratified in 10 degree latitudinal bands. The results show that surface sublimation decreases with an increase in latitude while blowing snow sublimation increases with latitude. Taken together, the surface sublimation and blowing snow processes was found to distribute 23% to 52% of winter precipitation over the three month winter season.


1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


2016 ◽  
Vol 16 (3) ◽  
pp. 1773-1788 ◽  
Author(s):  
A.-M. Blechschmidt ◽  
A. Richter ◽  
J. P. Burrows ◽  
L. Kaleschke ◽  
K. Strong ◽  
...  

Abstract. Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by GOME-2 on board the MetOp-A satellite over Arctic sea ice in polar spring. These plumes are often transported by high-latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. However, only few studies have focused on the role of polar weather systems in the development, duration and transport of tropospheric BrO plumes during bromine explosion events. The latter are caused by an autocatalytic chemical chain reaction associated with tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. In this manuscript, a case study investigating a comma-shaped BrO plume which developed over the Beaufort Sea and was observed by GOME-2 for several days is presented. By making combined use of satellite data and numerical models, it is shown that the occurrence of the plume was closely linked to frontal lifting in a polar cyclone and that it most likely resided in the lowest 3 km of the troposphere. In contrast to previous case studies, we demonstrate that the dry conveyor belt, a potentially bromine-rich stratospheric air stream which can complicate interpretation of satellite retrieved tropospheric BrO, is spatially separated from the observed BrO plume. It is concluded that weather conditions associated with the polar cyclone favoured the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.


2006 ◽  
Vol 36 (5) ◽  
pp. 827-846 ◽  
Author(s):  
Toru Miyama ◽  
Julian P. McCreary ◽  
Debasis Sengupta ◽  
Retish Senan

Abstract Variability of the wind field over the equatorial Indian Ocean is spread throughout the intraseasonal (10–60 day) band. In contrast, variability of the near-surface υ field in the eastern, equatorial ocean is concentrated at biweekly frequencies and is largely composed of Yanai waves. The excitation of this biweekly variability is investigated using an oceanic GCM and both analytic and numerical versions of a linear, continuously stratified (LCS) model in which solutions are represented as expansions in baroclinic modes. Solutions are forced by Quick Scatterometer (QuikSCAT) winds (the model control runs) and by idealized winds having the form of a propagating wave with frequency σ and wavenumber kw. The GCM and LCS control runs are remarkably similar in the biweekly band, indicating that the dynamics of biweekly variability are fundamentally linear and wind driven. The biweekly response is composed of local (nonradiating) and remote (Yanai wave) parts, with the former spread roughly uniformly along the equator and the latter strengthening to the east. Test runs to the numerical models separately forced by the τx and τy components of the QuikSCAT winds demonstrate that both forcings contribute to the biweekly signal, the response forced by τy being somewhat stronger. Without mixing, the analytic spectrum for Yanai waves forced by idealized winds has a narrowband (resonant) response for each baroclinic mode: Spectral peaks occur whenever the wavenumber of the Yanai wave for mode n is sufficiently close to kw and they shift from biweekly to lower frequencies with increasing modenumber n. With mixing, the higher-order modes are damped so that the largest ocean response is restricted to Yanai waves in the biweekly band. Thus, in the LCS model, resonance and mixing act together to account for the ocean's favoring the biweekly band. Because of the GCM's complexity, it cannot be confirmed that vertical mixing also damps its higher-order modes; other possible processes are nonlinear interactions with near-surface currents, and the model's low vertical resolution below the thermocline. Test runs to the LCS model show that Yanai waves from several modes superpose to form a beam (wave packet) that carries energy downward as well as eastward. Reflections of such beams from the near-surface pycnocline and bottom act to maintain near-surface energy levels, accounting for the eastward intensification of the near-surface, equatorial υ field in the control runs.


Sign in / Sign up

Export Citation Format

Share Document