scholarly journals Science Comprehension Retention Among Youth Agriscience Students Instructed in Weather and Climate

2020 ◽  
Vol 15 (6) ◽  
pp. 116-135
Author(s):  
Thomas J. Dormody ◽  
Peter Skelton ◽  
Gabrielle Rodriguez ◽  
David W. Dubois ◽  
Dawn VanLeeuwen

The purpose of this article is to examine the science comprehension retention of 8th-grade science students taught a new weather and climate curriculum. The students’ middle school is part of an innovative Extension youth agricultural science center that has a mission to develop and test new teaching and learning models and curricula in agriculture and natural resources. Our curriculum was developed following a science comprehension model we created and have been testing at the center. It contained lessons on the water cycle, the greenhouse effect, measuring and analyzing precipitation and temperature data, and mitigating and adapting to weather and climate extremes in agriculture and natural resources. For each lesson, students viewed introductory PowerPoint slides, participated in an activating strategy, set up an experiment or analyzed local precipitation or temperature data, formulated hypotheses, participated in a summary activity, and completed a worksheet. We pretested 81 students, taught the curriculum over a 6-day period, and gave the posttest. We returned 2 months later to administer a follow-up to check for science comprehension retention. The students’ overall science comprehension and science knowledge, science skills, and reasoning abilities subcomponent follow-up scores were lower than their post-program test scores. Both boys and girls declined in their overall post-program test gains over the 2 months. Students also declined in their preference for learning-by-doing from post-test to follow-up. Based on these results, we made changes to the curriculum consistent with the literature on learning retention before publishing it online for youth educators.

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 541
Author(s):  
Leonard M. Lauriault ◽  
Leah H. Schmitz ◽  
Shad H. Cox ◽  
Eric J. Scholljegerdes

Sorghum–sudangrass (Sorghum bicolor × S. sudanense (Piper) Stapf.) and pearl millet (Pennisetum glaucum (L.) R. Br.) provide adequate nutritive value for growing beef cattle; however, unlike pearl millet, sorghum–sudangrass produces hydrocyanic acid (which is toxic to livestock) when frosted. Forage yield, nutritive value, and weight gain of growing cattle grazing sorghum–sudangrass and pearl millet were compared during the frost-prone autumns of 2013 and 2014, at New Mexico State University’s Rex E. Kirksey Agricultural Science Center in Tucumcari, NM USA, in randomized complete block designs each year with two replicates. No differences existed between pearl millet and sorghum–sudangrass forage yield, although there was a year–forage interaction for fiber-based nutritive value components because of maturity differences across years between the forages when freeze-killed. Pearl millet allowed for extending grazing of available forage for an additional 14 and 24 d in 2013 and 2014, respectively, compared to sorghum–sudangrass during the frost-prone autumn periods. During that period, when sorghum forages produce potentially toxic levels of hydrocyanic acid, animals grazing pearl millet accumulated an additional average of 94.9 kg live-weight gain ha−1 (p < 0.001). These factors afford producers an opportunity to increase returns on the similar investments of establishing and managing warm-season annual forage crops each year, and allow more time to stockpile cool-season perennial and annual forages for winter and early spring grazing, or to reduce hay feeding.


2003 ◽  
Vol 14 (2-3) ◽  
pp. 215-232
Author(s):  
William Kininmonth

The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion.


2012 ◽  
Vol 93 (8) ◽  
pp. 1171-1187 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Duane E. Waliser ◽  
Martin J. Miller ◽  
Melvyn A. Shapiro ◽  
Ghassem R. Asrar ◽  
...  

The Year of Tropical Convection (YOTC) project recognizes that major improvements are needed in how the tropics are represented in climate models. Tropical convection is organized into multiscale precipitation systems with an underlying chaotic order. These organized systems act as building blocks for meteorological events at the intersection of weather and climate (time scales up to seasonal). These events affect a large percentage of the world's population. Much of the uncertainty associated with weather and climate derives from incomplete understanding of how meteorological systems on the mesoscale (~1–100 km), synoptic scale (~1,000 km), and planetary scale (~10,000 km) interact with each other. This uncertainty complicates attempts to predict high-impact phenomena associated with the tropical atmosphere, such as tropical cyclones, the Madden–Julian oscillation, convectively coupled tropical waves, and the monsoons. These and other phenomena influence the extratropics by migrating out of the tropics and by the remote effects of planetary waves, including those generated by the MJO. The diurnal and seasonal cycles modulate all of the above. It will be impossible to accurately predict climate on regional scales or to comprehend the variability of the global water cycle in a warmer world without comprehensively addressing tropical convection and its interactions across space and time scales.


2021 ◽  
Author(s):  
Alexandre M. Ramos ◽  
Rémy Roca ◽  
Pedro M.M. Soares ◽  
Anna M. Wilson ◽  
Ricardo M. Trigo ◽  
...  

&lt;p&gt;One of the World Climate Research Programme Grand Challenges is to evaluate whether existing observations are enough to underpin the assessment of weather and climate extremes. In this study, we focus on extreme associated with Atmospheric Rivers (ARs). ARs are characterized by intense moisture transport usually from the tropics to the extra-tropics. They can either be beneficial, providing critical water supply, or hazardous, when excessive precipitation accumulation leads to floods. Here, we examine the uncertainty in gridded precipitation products included in the Frequent Rainfall Observations on GridS (FROGS) database during two atmospheric river events in distinct Mediterranean climates: one in California, USA, and another in Portugal. FROGS is composed of gridded daily-precipitation products on a common 1&amp;#8728;&amp;#215;1&amp;#8728; grid to facilitate intercomparison and assessment exercises. The database includes satellite, ground-based and reanalysis products. Results show that the precipitation products based on satellite data, individually or combined with other products, perform least well in capturing daily precipitation totals over land during both cases studied here. The reanalysis and the gauge-based products show the best agreement with local ground stations. As expected, there is an overall underestimation of precipitation by the different products. For the Portuguese AR, the multi-product ensembles reveal mean absolute percentage errors between -25% and -60%. For the Western US case, the range is from -60% to -100 %.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Acknowledgments&lt;/p&gt;&lt;p&gt;The financial support for this work was possible through the following FCT project: HOLMODRIVE&amp;#8212;North Atlantic Atmospheric Patterns Influence on Western Iberia Climate: From the Late Glacial to the Present (PTDC/CTA-GEO/29029/2017). A.M. Ramos was supported by the Scientific Employment Stimulus 2017 from Funda&amp;#231;&amp;#227;o para a Ci&amp;#234;ncia e a Tecnologia (FCT, CEECIND/00027/2017).&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Dörthe Handorf ◽  
Ozan Sahin ◽  
Annette Rinke ◽  
Jürgen Kurths

&lt;p&gt;Under the rapid and amplified warming of the Arctic, changes in the occurrence of Arctic weather and climate extremes are evident which have substantial cryospheric and biophysical impacts like floods, droughts, coastal erosion or wildfires. Furthermore, these changes in weather and climate extremes have the potential to further amplify Arctic warming.&amp;#160;&lt;br&gt;Here we study extreme cyclone events in the Arctic, which often occur during winter and are associated with extreme warming events that are caused by cyclone-related heat and moisture transport into the Arctic. In that way Arctic extreme cyclones have the potential to retard sea-ice growth in autumn and winter or to initiate an earlier melt-season onset.&amp;#160;&lt;br&gt;To get a better understanding of these extreme cyclones and their occurrences in the Arctic, it is important to reveal the related atmospheric teleconnection patterns and understand their underlying mechanisms. In this study, the methodology of complex networks is used to identify teleconnections associated with extreme cyclones events (ECE) over Spitzbergen. We have chosen Spitzbergen, representative for the Arctic North Atlantic region which is a hot spot of Arctic climate change showing also significant recent changes in the occurrence of extreme cyclone events.&amp;#160;&lt;br&gt;Complex climate networks have been successfully applied in the analysis of climate teleconnections during the last decade. To analyze time series of unevenly distributed extreme events, event synchronization (ES) networks are appropriate. Using this framework, we analyze the spatial patterns of significant synchronization between extreme cyclone events over the Spitzbergen area and extreme events in sea-level pressure (SLP) in the rest of the Northern hemisphere for the extended winter season from November to March. Based on the SLP fields from the newest atmospheric reanalysis ERA5, we constructed the ES networks over the time period 1979-2019.&lt;br&gt;The spatial features of the complex network topology like Eigenvector centrality, betweenness centrality and network divergence are determined and their general relation to storm tracks, jet streams and waveguides position is discussed. Link bundles in the maps of statistically significant links of ECEs over Spitzbergen with the rest of the Northern Hemisphere have revealed two classes of teleconnections: Class 1 comprises links from various regions of the Northern hemisphere to Spitzbergen, class 2 comprises links from Spitzbergen to various regions of the Northern hemisphere. For each class three specific teleconnections have been determined. By means of composite analysis, the corresponding atmospheric conditions are characterized.&lt;br&gt;As representative of class 1, the teleconnection between extreme events in SLP over the subtropical West Pacific and delayed ECEs at Spitzbergen is investigated. The corresponding lead-lag analysis of atmospheric fields of SLP, geopotential height fields and meridional wind fields suggests that the class 1 teleconnections are caused by tropical forcing of poleward emanating Rossby wave trains. As representative of class 2, the teleconnection between ECEs at Spitzbergen and delayed extreme events in SLP over Northwest Russia is analyzed. The corresponding lead-lag analysis of atmospheric fields of SLP and geopotential height fields from the troposphere to the stratosphere suggests that the class 2 teleconnections are caused by troposphere-stratosphere coupling processes.&lt;/p&gt;


2021 ◽  
Author(s):  
Richard Blender ◽  
Alexia Karwat ◽  
Christian Franzke

&lt;p&gt;Extratropical cyclones are the primary natural hazards affecting Europe. With the release of ERA5 reanalysis data from 1950-1978 by the European Centre for Medium-Range Weather Forecasts (ECMWF), new opportunities have arisen to investigate mid-latitude cyclones in terms of climatic features and trends in longer and higher resolution. We analyze cyclones by nearest neighbor search in 1000 hPa geopotential height minima in different high resolutions for different minimum life-times. We find an intensification of North Atlantic cyclones in 1950-2019. Short-lived cyclones grow in radius and depth. In the Mediterranean, however, long-lived cyclones have weakened; but traveled also further in 1950-2019. Additionally, we illustrate relations between cyclone tracks, radii and correlated weather and climate extremes.&lt;/p&gt;


2020 ◽  
Author(s):  
Torsten Schmidt ◽  
Patrick Schreiner ◽  
Byron Iijima ◽  
Chi Ao

&lt;p&gt;An objective of the GRACE-FO mission is the continuation of GRACE radio occultation measurements successfully performed between 2006 and 2017.&lt;/p&gt; &lt;p&gt;GRACE and GRACE-FO radio occultations contribute to the overall radio occultation dataset used in weather and climate applications.&lt;/p&gt; &lt;p&gt;Since mid-2019 rising occultations from GF1 are available while setting radio occultations from GF2 are still disabled. After several on-board software updates and raw data reader improvements about 280 daily GF1 radio occultations are available since March 2020.&lt;/p&gt; &lt;p&gt;Currently GF1 radio occultation data are processed on the basis of different measured variables: For different GPS satellites a combination of L1CA/L2P, L1CA/L2C, or L1CA/L5 is available.&lt;/p&gt; &lt;p&gt;In this study first results of GF1 processing are presented. Refractivity and temperature data up to an altitude of 60 km will be compared with ECMWF operational analyses and the quality of the different measured variables will be evaluated.&lt;/p&gt;


2013 ◽  
Vol 125 (1) ◽  
pp. 24
Author(s):  
Leanne Webb

p>Agricultural production in Victoria includes the dairy, lamb and mutton, grains and perennial and annual horticultural sectors, with Victorian farmers contributing a major proportion of the Australian production total in many of these sectors. All these industries are exposed in different ways to weather and climate extremes. With projected warming of approximately 0.8°C by 2030 and by 1.4–2.7°C by 2070 (emissions dependent), and most climate models indicating reduced rainfall for the Victorian region (median of model results projecting a reduction of 4% by 2030 and 6%–11% by 2070; emissions dependent), a range of sectorspecific impacts could result. Increases in extreme events, such as heatwaves (e.g. for Mildura, days >35°C could nearly double from 32 to 59 annually by 2070), bushfires and drought, as well as an increased chance of extreme rainfall are all anticipated. Increasing frequencies of extreme events have the potential to affect agricultural production more than changes to the mean climate. For example, the exceptional heatwave that occurred in south-eastern Australia during January and February 2009 resulted in unprecedented impacts, with significant heat-stress related crop losses reported at many sites. Flooding in 2011 was also very costly to Victorian farmers with many crops being lost in the floodwaters and reduced agricultural production costing an estimated Au$500–600 million. Responses to climate variability already practised by the farming sector will inform some adaptation options that will assist farmers to cope in an increasingly challenging environment. As well as taking advantage of their underlying resilience, initiatives aimed at increasing the adaptive capacity of farmers are being implemented at many levels in agricultural communities.


Sign in / Sign up

Export Citation Format

Share Document