The Actual States and Physical Self-symptoms Related to Indoor Environment Air Quality of Sports Centers

2004 ◽  
Vol 22 ◽  
pp. 331-344
Author(s):  
Yoon Sook Hong
2017 ◽  
Vol 68 (1) ◽  
pp. 85-89
Author(s):  
Vasilica Vasile ◽  
Alina Dima ◽  
Mihaela Ion

The paper presents the results of the monitoring of the inorganic gaseous pollutants such as nitric oxide (NO), sulfur dioxide (SO2), ozone (O3), carbon oxides (CO, CO2), from indoor air of four office spaces, located in urban area of Bucharest � Romania, by using the equipment that detected and recorded, in real time, the concentrations of the compounds. The study aimed to obtain useful information on air quality from office spaces, and for the awareness of acute necessity for action to improve the quality of the indoor environment in which we live and work.


2017 ◽  
Vol 12 (2) ◽  
pp. 129-137
Author(s):  
Petr Komínek ◽  
Jan Weyr ◽  
Jiří Hirš

Abstract Indoor environment has huge influence on person’s health and overall comfort. It is of great importance that we realize how essential indoor air quality is, considering we spend on average as much as 90% of our time indoors. There are many factors that affect indoor air quality: specifically, inside air temperature, relative humidity, and odors to name the most important factors. One of the key factors indicating indoor air quality is carbon dioxide (CO2) level. The CO2 levels, measured in prefab apartment buildings, indicates substantial indoor air quality issues. Therefore, a proper education of the occupants is of utmost importance. Also, great care should be directed towards technical and technological solutions that would ensure meeting the normative indoor environment criteria, especially indoor air CO2 levels. Thanks to the implementation of new emerging autonomous technologies, such as Internet of Things (IoT), monitoring in real-time is enhanced. An area where IoT plays a major role is in the monitoring of indoor environment. IoT technology (e.g. smart meters and sensors) provide awareness of information about the quality of indoor environment. There is a huge potential for influencing behaviour of the users. Through the web application, it is possible to educate people and ensure fresh air supply.


2018 ◽  
Vol 49 ◽  
pp. 00133 ◽  
Author(s):  
Monika Wysocka

The quality of indoor environment is an extremely important issue, because people spend large parts of the day inside buildings. The quality of the indoor environment is largely dependent on the quality of indoor air. The parameters of the air we breathe affect our health and comfort of room use. Currently, when energy efficiency is a priority, it is difficult to maintain comfort and conditions appropriate for human health. The artificial environment in a room and related inadequate air quality cause many diseases, such as asthma, lung diseases, cardiovascular diseases, as well as poor well-being and reduced productivity. The Disability Adjusted Life Years (DALY) indicator means “loss of life corrected by disability” and is widely used by the World Health Organization to measure a disease burden on the population and identify the causes of a disease. The aim of the article is to present the structure of the DALY indicator and its suitability to assess the impact of indoor air quality on human health. The most frequent diseases caused by low quality of internal air were analysed based on statistical data. In addition, the possibilities of ventilation solutions have been presented, leading to the improvement of air quality in indoor environment.


2020 ◽  
Vol 197 ◽  
pp. 04002
Author(s):  
Ludovico Danza ◽  
Lorenzo Belussi ◽  
Francesco Salamone

The quality of the indoor environment, in terms of thermal, lighting, air and acoustic quality, grouped in the Indoor Environmental Quality (IEQ) concept, plays a key role in occupants’ wellbeing and satisfaction. Only in recent years IEQ has been investigated as a whole. Today, IEQ occupies the same place of energy efficiency in the design of buildings, especially those with high performance level as the Zero-Energy Buildings (ZEB). The research deals with an experimental campaign during the cooling season carried out in a ZEB laboratory that involved 100 participants aimed at evaluating the IEQ and the indoor environments (e.g. thermal and air quality). The test consists in a survey, during which each participant is required to answer a questionnaire about how he feels the indoor environment. The experimental campaign was completed with a monitoring activity aimed at detecting the main environmental variables that can affect the participants’ answers. Collected data were treated with regression techniques to highlight possible relationships between them. The results show how in a building with high levels of energy performances the air quality plays a key role on occupants’ evaluation.


Author(s):  
Shuo Zhang ◽  
D Mumovic ◽  
Samuel Stamp ◽  
Katherine Curran ◽  
Elizabeth Cooper

Considering the alarming rise in the rate of asthma and respiratory diseases among school children, it is of great importance to investigate all probable causes. Outside of the home, children spend most of their time in school. Many studies have researched the indoor environmental quality of primary and secondary school buildings to determine the exposure of school children to indoor air pollution. However, studies of very young children in nurseries are scarce. Unlike at elementary schools or universities, children in nurseries are more vulnerable due to their physiology, inability to articulate discomfort and to adapt their behaviour to avoid exposures. This article reviews current studies on the indoor environment in nurseries. It summarizes air pollution levels and related environmental and behavioural factors in nurseries that have been reported in the literature. Additionally, exposure to indoor air pollution and related potential health outcomes are examined. This review concludes that indoor air pollution in nurseries often exceeds current guidelines, and designers and policymakers should be made aware of the impact on the health and wellbeing of children in nurseries. Proper interventions and guidelines should be considered to create a healthy indoor environment for nursery children. Practical application: Previous IAQ assessments have mainly focused on indoor temperatures and CO2 levels. Data on comprehensive monitoring (including PMs, NO2, O3 and other pollutants) of indoor air quality of nurseries are scarce. Particularly in the UK, studies about indoor air quality in nurseries have not been founded. This paper categorized relevant articles according to the focus of the study, to provide evidence to a better understanding of current indoor air quality in nursery environments.


2014 ◽  
Vol 16 (5) ◽  
pp. 832-839 ◽  

<p>The assessment of the air quality of indoor environment where people usually spend extended time periods, especially for sensitive population groups such as patients during their hospitalization, is of major importance. Ensuring a safe level of air quality in these indoor environment serves as an amelioration factor for human health not only for the often habitués of those indoors places, but also for the working personnel that spend more than 90% of their time indoors. In that aspect the concentration of coarse (PM<sub>10</sub>) and fine (PM<sub>2.5</sub>, PM<sub>1.0</sub>) particulate matter was measured in two Intensive Care Units (ICU), with different spatial and trespassing characteristics, of the Democritus University Hospital situated at Alexandroupolis, Greece. The measurements were conducted with the application of two portable aerosol monitoring equipment (TSI DustTrak 8520 and Grimm 107).</p> <div> <p>The results indicated that the 24-h average concentrations were below the indicative limits proposed by the World Health Organization (WHO) (50 and 25 μg m<sup>-3</sup> for PM<sub>10</sub> and PM<sub>2.5</sub> respectively). Relatively elevated instant concentration levels (&gt;100 μg m<sup>-3</sup>) were also recorded during specific activities and in conjunction with the temporal variation of the observed concentration levels raised questions regarding the side effects of cleaning activities.</p> </div> <p>&nbsp;</p>


2018 ◽  
Vol 28 (4) ◽  
pp. 1329-1333
Author(s):  
Miodrag Šmelcerović

The protection of the environment and people’s health from negative influences of the pollution of air as a medium of the environment requires constant observing of the air quality in accordance with international standards, the analysis of emission and imission of polluting matters in the air, and their connection with the sources of pollution. Having in mind the series of laws and delegated legislations which define the field of air pollution, it is necessary to closely observe these long-term processes, discovering cause-and-effect relationships between the activities of anthropogenic sources of emission of polluting matters and the level of air degradation. The relevant evaluation of the air quality of a certain area can be conducted if the level of concentration of polluting matters characteristic for the pollution sources of this area is observed in a longer period of time. The data obtained by the observation of the air pollution are the basis for creation of the recovery program of a certain area. Vranje is a town in South Serbia where there is a bigger number of anthropogenic pollution sources that can significantly diminish the air quality. The cause-and-effect relationship of the anthropogenic sources of pollution is conducted related to the analysis of systematized data which are in the relevant data base of the authorized institution The Institute of Public Health Vranje, for the time period between the year of 2012. and 2017. By the analysis of data of imission concentrations of typical polluting matters, the dominant polluting matters were determined on the territory of the town of Vranje, the ones that are the causers of the biggest air pollution and the risk for people’s health. Analysis of the concentration of soot, sulfur dioxide and nitrogen oxides indicates their presence in the air of Vranje town area in concentrations that do not exceed the permitted limit values annually. The greatest pollution is caused by the soot content in the air, especially in the winter period when the highest number of days with the values above the limit was registered. By perceiving the influence of natural and anthropogenic factors, it is clear that the concentration of polluting matters can be decreased only by establishing control over anthropogenic sources of pollution, and thus it can be contributed to the improvement of the air quality of this urban environment.


2020 ◽  
Vol 13 (1) ◽  
pp. 261
Author(s):  
Christos Petsas ◽  
Marinos Stylianou ◽  
Antonis Zorpas ◽  
Agapios Agapiou

The air quality of modern cities is considered an important factor for the quality of life of humans and therefore is being safeguarded by various international organizations, concentrating on the mass concentration of particulate matter (PM) with an aerodynamic diameter less than 10, 2.5 and 1 μm. However, the different physical and anthropogenic processes and activities within the city contribute to the rise of fine (<1 μm) and coarse (>1 μm) particles, directly impacting human health and the environment. In order to monitor certain natural and anthropogenic events, suspecting their significant contribution to PM concentrations, seven different events taking place on the coastal front of the city of Limassol (Cyprus) were on-site monitored using a portable PM instrument; these included both natural (e.g., dust event) and anthropogenic (e.g., cement factory, meat festival, tall building construction, tire factory, traffic jam, dust road) emissions taking place in spring and summer periods. The violations of the limits that were noticed were attributed mainly to the various anthropogenic activities taking place on-site, revealing once more the need for further research and continuous monitoring of air quality.


Sign in / Sign up

Export Citation Format

Share Document