scholarly journals Physiological and Performance Correlates of Squash Physical Performance

Author(s):  
Carl James ◽  
imothy Jones ◽  
Saro Farra

The physiological and performance attributes of elite squash players were investigated. Thirty-one players (21 males, world ranking [WR] 42-594; 10 females, WR 7-182) completed a battery of fitness tests which included an aerobic squash-specific physical performance test (SPPT), repeated-sprint ability (RSA), change-of-direction speed (COD), acceleration (5-m sprint), body composition and force development (countermovement jump) assessments. The SPPT provided a finishing lap score, V̇O2max, average movement economy and the lap corresponding to a blood lactate concentration of 4 mM.L-1. Players were ranked and assigned to HIGH or LOW performance tiers. Two-way ANOVA (performance level*sex) revealed higher ranked players performed better (p < 0.05) for SPPT final lap (d = 0.35), 4 mM.L-1 lap (d = 0.52) and COD (d = 0.60). SPPT displayed a ‘very-large’ correlation with 4 mM.L-1 lap (r = 0.86), ‘large’ correlations with COD (r = 0.79), RSA (r = 0.79), sum-of-7 skinfolds (r = 0.71) and V̇O2max (r = 0.69), and a ‘trivial’ correlation with average movement economy (r = 0.02). Assessments of cardiovascular fitness (i.e. 4 mM.L-1 lap), RSA, COD and body composition appear highly pertinent for performance profiling of squash players. Regular, submaximal assessment of the 4 mM.L-1 lap during the SPPT may offer a practical athlete monitoring approach for elite squash players.

2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


Sports ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 246
Author(s):  
Shaher A. I. Shalfawi ◽  
Eystein Enoksen ◽  
Håvard Myklebust

Objectives: The main purpose of the present study was to investigate the acute effects of myofascial tissue rolling on endurance performance and recovery using a novel designed mechanical self-induced multi-bar roller-massager. Methods: a randomized crossover, repeated measure design was used. Eight national levelled, junior and neo-senior, speed skaters underwent a 10 min myofascial quadriceps rolling pre- and fifteen minutes post- a stepwise incremental cycling-test to exhaustion followed by a Wingate performance-test. The myofascial quadriceps rolling was used in one out of two laboratory testing-days. Time to exhaustion, peak oxygen uptake (VO2peak), blood lactate concentration during 30 min of recovery, and peak- and mean- power during the consecutive Wingate test were recorded. Results: Myofascial quadriceps rolling using roller-massager resulted in higher blood lactate concentration at exhaustion and a larger blood lactate clearance after 10 min to post exhaustion test (both p < 0.05), a tendency for a positive effect on Wingate peak-power (p = 0.084; d = 0.71), whereas no marked differences were observed on VO2peak, time to exhaustion and Wingate mean-power. Conclusion: Despite indications for potential benefits of the quadriceps myofascial tissue release using the mechanical self-induced multi-bar roller-massager on blood lactate concentration and Wingate peak-power, the myofascial tissue release gave no marked performance improvements nor indications of negative effects. Future studies could examine the long-term effects of myofascial tissue release on performance and recovery. Furthermore, integrating a measure of the participants’ subjective experience pre- and post the myofascial tissue release would be of great interest.


2012 ◽  
Vol 302 (8) ◽  
pp. E972-E978 ◽  
Author(s):  
Luigi Di Luigi ◽  
Paolo Sgrò ◽  
Carlo Baldari ◽  
Maria Chiara Gallotta ◽  
Gian Pietro Emerenziani ◽  
...  

Phosphodiesterase type 5 inhibitors may influence human physiology, health, and performance by also modulating endocrine pathways. We evaluated the effects of a 2-day tadalafil administration on adenohypophyseal and adrenal hormone adaptation to exercise in humans. Fourteen healthy males were included in a double-blind crossover trial. Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day with a 36-h interval) before a maximal exercise was performed. After a 2-wk washout, the volunteers were crossed over. Blood samples were collected at −30 and −15 min and immediately before exercise, immediately after, and during recovery (+15, +30, +60, and +90 min) for adrenocorticotropin (ACTH), β-endorphin, growth hormone (GH), prolactin, cortisol (C), corticosterone, dehydroepiandrosterone-sulfate (DHEAS), and cortisol binding globulin (CBG) assays. C-to-CBG (free cortisol index, FCI) and DHEAS-to-C ratios were calculated. Exercise intensity, perceived exertion rate, O2 consumption, and CO2 and blood lactate concentration were evaluated. ACTH, GH, C, corticosterone, and CBG absolute concentrations and/or areas under the curve (AUC) increased after exercise after both placebo and tadalafil. Exercise increased DHEAS only after placebo. Compared with placebo, tadalafil administration reduced the ACTH, C, corticosterone, and FCI responses to exercise and was associated with higher β-endorphin AUC and DHEAS-to-C ratio during recovery, without influencing cardiorespiratory and performance parameters. Tadalafil reduced the activation of the hypothalamus-pituitary-adrenal axis during exercise by probably influencing the brain's nitric oxide- and cGMP-mediated pathways. Further studies are necessary to confirm our results and to identify the involved mechanisms, possible health risks, and potential clinical uses.


2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.


2018 ◽  
Vol 16 (1) ◽  
pp. 149
Author(s):  
Georgia Rozi ◽  
Vassilios Thanopoulos ◽  
Milivoj Dopsaj

The purpose of this study was to investigate the differences in maximum concentration of lactic acid in the blood, heart rate and performance time on the test of 4x50m freestyle swimming on a sample of two protocols: a) one breath every 3 strokes and b) 14-15m of every 50m were swum with underwater movement of the feet without breathing and a rest with one breath every 3 strokes (apnea). The sample consisted of 15 female swimmers of the competitive level aged: 15.0 ± 1.0 years. Their basic style was the freestyle. To determine the maximum blood lactate concentration, capillary blood samples were taken in the 3rd, 5th, 7th minute and analyzed by the automatic analyzer Scout Lactate Germany. We also measured the heart rate immediately after each swimming protocol. The ANOVA showed that there were no statistically significant differences between the two protocols. Maximum lactate concentration in the protocol with apnea was 10.02 ± 3.05mmol / L and without apnea 8.9 ± 3.5mmol / L. Heart rate was 186 ± 6 and 186 ± 7 b/min respectively, and performance time 140.04 ± 8.13 and 138.73 ± 8.01sec in swimmers aged 14-16. Swimming apnea needs to be studied in a larger age sample with more variables to ascertain the effects on sprint swimming.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S392-S392
Author(s):  
Connie W Bales ◽  
Kathryn N Porter Starr ◽  
Marshall Miller

Abstract Nutritional status is a strong determinant of both body composition and physical function (PF), parameters that are closely interrelated but rarely evaluated in the clinical setting due to cost, access, and lack of agreement on best approaches in older adults. Recent evidence that changes in muscle mass do not closely correspond to changes in muscle function will be reviewed in the context of our studies of higher protein obesity interventions. PF assessments, including indices for older adults (Short Physical Performance Battery and Physical Performance Test), as well as specific tests like gait speed and handgrip strength, will be explained as nutrition outcomes and in relation to body composition from air displacement (BodPod) and dual energy x-ray absorptiometry (DXA). These results, along with new studies of muscle quality, will bring a better understanding of the complexity of responses to nutritional interventions designed to optimize body mass and composition in older adults.


2018 ◽  
Vol 74 (9) ◽  
pp. 1475-1483 ◽  
Author(s):  
Eric S Orwoll ◽  
Nora F Fino ◽  
Thomas M Gill ◽  
Jane A Cauley ◽  
Elsa S Strotmeyer ◽  
...  

Abstract Background Physical performance and activity have both been linked to fall risk, but the way they are jointly associated with falls is unclear. We investigated how these two factors are related to incident falls in older men. Methods In 2,741 men (78.8 ± 5 years), we evaluated the associations between activity and physical performance and how they jointly contributed to incident falls. Activity was assessed by accelerometry. Physical performance was measured by gait speed, dynamic balance (narrow walk), chair stand time, grip strength, and leg power. Falls were ascertained by tri-annual questionnaires. Results Men were grouped into four categories based on activity and performance levels. The greatest number of falls (36%–43%) and the highest fall rate (4.7–5.4/y among those who fell) (depending on the performance test) occurred in men with low activity/low performance, but most falls (57%–64%) and relatively high fall rates (3.0–4.35/y) occurred in the other groups (low activity/high performance, high activity/high performance and high activity/low performance; 70% of men were in these groups). There were interactions between activity, performance (gait speed, narrow walk), and incident falls (p = .001–.02); predicted falls per year were highest in men with low activity/low performance, but there was also a peak of predicted falls in those with high activity. Conclusions In community-dwelling older men, many falls occur in those with the lowest activity/worst physical performance but fall risk is also substantial with better activity and performance. Activity/physical performance assessments may improve identification of older men at risk of falls, and allow individualized approaches to prevention.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 198
Author(s):  
Seung-Bo Park ◽  
Da-Sol Park ◽  
Minjun Kim ◽  
Eunseok Lee ◽  
Doowon Lee ◽  
...  

This study aimed to evaluate the effects of warm-up intensity on energetic contribution and performance during a 100-m sprint. Ten young male sprinters performed 100-m sprints following both a high-intensity warm-up (HIW) and a low-intensity warm-up (LIW). Both the HIW and LIW were included in common baseline warm-ups and interventional warm-ups (eight 60-m runs, HIW; 60 to 95%, LIW; 40% alone). Blood lactate concentration [La−], time trial, and oxygen uptake (VO2) were measured. The different energy system contribution was calculated by using physiological variables. [La−1]Max following HIW was significantly higher than in LIW (11.86 ± 2.52 vs. 9.24 ± 1.61 mmol·L−1; p < 0.01, respectively). The 100-m sprint time trial was not significantly different between HIW and LIW (11.83 ± 0.57 vs. 12.10 ± 0.63 s; p > 0.05, respectively). The relative (%) phosphagen system contribution was higher in the HIW compared to the LIW (70 vs. 61%; p < 0.01, respectively). These results indicate that an HIW increases phosphagen and glycolytic system contributions as compared to an LIW for the 100-m sprint. Furthermore, an HIW prior to short-term intense exercise has no effect on a 100-m sprint time trial; however, it tends to improve times (decreased 100-m time trial; −0.27 s in HIW vs. LIW).


Author(s):  
Felipe Marroni Rasteiro ◽  
Fulvia de Barros Manchado Gobatto ◽  
Leonardo Henrique Dalcheco Messias ◽  
João Pedro da Cruz ◽  
Rafael Lucas Cetein ◽  
...  

Ten healthy male individuals were randomly evaluated in two exercise sessions (with or without music during the tests). They were submited to an incremental running test (3-min stages; initial intensity equal to 7 km.h-1 and 1 km.h-1 increments; treadmill inclination equal to 1%). The music´s motivation were adressed by the Brunel Rating Music Inventory- 2, considering the most motivation on top of the playlist, and then yours subsequents. Anaerobic threshold intensity (iAnT), blood lactate concentration ([Lac]iAnT) and heart rate (HRiAnT) at anaerobic threshold intensity were considered as physiological parameters. Psychophysiological scales such as Perceived Exertion (PSEBorg), Perceived Effort (PSEFoster) and Estimation of Time Limit (ETL) were used for psychophysiological analyses. Time to exhaustion (T.T) was considered as performance parameter. No differences were found between iAnT (p=0.248), [Lac]iAnT (p=0.786), HRiAnT (p=1.000) an T.T (p=0.055). However, 70% of the sample presented better performance with asynchronous music was inserted (p=0.003). Significant differences were visualized for PSEBorg (AM= ;WM= ;0,042) and ETL (AM= ;WM= ;p=0.015). In sumary, for 70% of the evaluated sample asynchronous music exerted ergogenic effect on the physical performance in an incremental running protocol attenuating the psychophysiological responses without changing physiological parameters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo A. Massini ◽  
Tiago A. F. Almeida ◽  
Camila M. T. Vasconcelos ◽  
Anderson G. Macedo ◽  
Mário A. C. Espada ◽  
...  

This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p &lt; 0.01 for all comparisons. In addition, C differed between distances for each sex (p &lt; 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p &lt; 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.


Sign in / Sign up

Export Citation Format

Share Document