scholarly journals Patterns of ecosystem functioning as tool for biological regionalization: the case of the Mediterranean-desert-tropical transition of Baja California

2021 ◽  
Vol 42 ◽  
pp. e68529
Author(s):  
Beatriz P. Cazorla ◽  
Pedro P. Garcillán ◽  
Javier Cabello ◽  
Domingo Alcaraz-Segura ◽  
Andrés Reyes ◽  
...  

Large-scale ecological variations across Earth have important consequences for biodiversity and, therefore, forbiological conservation. Despite the widespread use of ecological maps in conservation schemes, they have been based mainly on structural and compositional features but scarcely on functional dimensions of life. Incorporating functional variables complements and improves the descriptions of regionalizations and offers a new understanding of biodiversity patterns. The development of remote sensing measurement allows for the description of the functional patterns of ecosystems through Ecosystem Functional Types (EFTs), opening new opportunities to analyze the geography of life. This article aims to examine the relationships between ecological regionalization based on components and structure and patterns of ecosystem functioning. As proof of case, we chose the Baja California peninsula, whose singularity has generated a rich variety of ecological and biogeographical interpretations, mainly based on ecosystem components and structure. We hypothesize that patterns in ecosystem functioning reflect ecoregionalization based on composition and structure features. We identified Ecosystem Functional Types (EFTs), from three descriptors of the seasonal curves of MODIS Enhanced Vegetation Index (EVI) from 2001 to 2017. We characterized each ecoregion in terms of ecosystem functioning and we carried out a correspondence analysis between the EFTs classification and the ecoregions. At a large scale, EFTs showed a pattern with three general regions from northwest to south, capturing the north-south transition of climatic regimes shown in the ecoregions map, from the northwestern Mediterranean area to the southern tropical zone, with a desert transition area between them. However, differences between the functional characterization and some ecoregions were detected in ecoregions identified as discrepancy areas between authors. In particular, some ecoregions considered Mediterranean showed a Desert character in its functioning, and others considered as Desert were Tropical functionally. EFTs remotely sensed measured at regional scales provide the basis for a more comprehensive regionalization of geographical patterns of life and, therefore, an improvement for future conservation purposes.

2018 ◽  
Author(s):  
Henrike Andresen ◽  
Jennifer Dannheim ◽  
Thomas Brey

The benthic compartment is central to ecosystem services in shelf seas. Assemblages with a higher diversity have been suggested to operate more effectively. However, there is no general ecological relationship between diversity and ecosystem functioning due to species-specific effects and environmental influences. We are taking a trait-based and large-scale observational approach to link patterns in macrofaunal functional diversity with ecosystem functioning in the southern North Sea, a marginal sea of the North Atlantic. Secondary production serves as a quantitative measure of ecosystem functioning. It is calculated with taxon-specific empirical production models, while functional diversity is expressed in indices based on trait dissimilarities. Using spatially implicit regressions, we analyze how secondary production is related to functional diversity and environmental factors. Further, we explore whether models are improved by substituting functional diversity with specific key traits potentially related to secondary production. The North Sea has a long history of cumulating local and global human influences. Knowledge on the predictive value of trait diversity for maintaining productivity in our system is needed for succeeding research on consequences of changes in biodiversity for ecosystem functioning.


2018 ◽  
Author(s):  
Henrike Andresen ◽  
Jennifer Dannheim ◽  
Thomas Brey

The benthic compartment is central to ecosystem services in shelf seas. Assemblages with a higher diversity have been suggested to operate more effectively. However, there is no general ecological relationship between diversity and ecosystem functioning due to species-specific effects and environmental influences. We are taking a trait-based and large-scale observational approach to link patterns in macrofaunal functional diversity with ecosystem functioning in the southern North Sea, a marginal sea of the North Atlantic. Secondary production serves as a quantitative measure of ecosystem functioning. It is calculated with taxon-specific empirical production models, while functional diversity is expressed in indices based on trait dissimilarities. Using spatially implicit regressions, we analyze how secondary production is related to functional diversity and environmental factors. Further, we explore whether models are improved by substituting functional diversity with specific key traits potentially related to secondary production. The North Sea has a long history of cumulating local and global human influences. Knowledge on the predictive value of trait diversity for maintaining productivity in our system is needed for succeeding research on consequences of changes in biodiversity for ecosystem functioning.


2020 ◽  
Vol 48 (3) ◽  
pp. 5-9
Author(s):  
M.N. Koshlyakov

In 1970, an experiment named Polygon–70 was carried out by Russian oceanographers in the tropical zone of the North Atlantic. During this experiment, seventeen autonomous buoy moorings were deployed for the period of half-a-year to measure ocean currents in the ocean layer ranging from the surface to the depth of 1500 m. The outcome of this work was the discovery of what later became known as “synoptic eddies of the open ocean”. It revealed the scale, the nature of time variability and energy of these vortices, as well as an interpretation of the observed phenomena from the point of view of the theory of Rossby waves. It was suggested, that the emergence of the vortices was due to baroclinic instability of large-scale flow. These results of Polygon–70 expedition showed its outstanding value and provided basis for further development of studies of ocean vortices.


2018 ◽  
pp. 1-34
Author(s):  
Andrew Jackson

One scenario put forward by researchers, political commentators and journalists for the collapse of North Korea has been a People’s Power (or popular) rebellion. This paper analyses why no popular rebellion has occurred in the DPRK under Kim Jong Un. It challenges the assumption that popular rebellion would happen because of widespread anger caused by a greater awareness of superior economic conditions outside the DPRK. Using Jack Goldstone’s theoretical expla-nations for the outbreak of popular rebellion, and comparisons with the 1989 Romanian and 2010–11 Tunisian transitions, this paper argues that marketi-zation has led to a loosening of state ideological control and to an influx of infor-mation about conditions in the outside world. However, unlike the Tunisian transitions—in which a new information context shaped by social media, the Al-Jazeera network and an experience of protest helped create a sense of pan-Arab solidarity amongst Tunisians resisting their government—there has been no similar ideology unifying North Koreans against their regime. There is evidence of discontent in market unrest in the DPRK, although protests between 2011 and the present have mostly been in defense of the right of people to support themselves through private trade. North Koreans believe this right has been guaranteed, or at least tacitly condoned, by the Kim Jong Un government. There has not been any large-scale explosion of popular anger because the state has not attempted to crush market activities outright under Kim Jong Un. There are other reasons why no popular rebellion has occurred in the North. Unlike Tunisia, the DPRK lacks a dissident political elite capable of leading an opposition movement, and unlike Romania, the DPRK authorities have shown some flexibility in their anti-dissent strategies, taking a more tolerant approach to protests against economic issues. Reduced levels of violence during periods of unrest and an effective system of information control may have helped restrict the expansion of unrest beyond rural areas.


The key aspects of the process of designing and developing an information and cartographic control tool with business analytics functions for the municipal level of urban management are considered. The review of functionality of the developed tool is given. Examples of its use for the analysis and monitoring of implementation of the program of complex development of territories are given. The importance of application of information support of management and coordination at all levels of management as an integral part of the basic model of management and coordination system of large-scale urban projects of dispersed construction is proved. Information and map-made tool with business intelligence functions was used and was highly appreciated in the preparation of information-analytical and presentation materials of the North-Eastern Administrative District of Moscow. Its use made it possible to significantly optimize the list of activities of the program of integrated development of territories, their priority and timing.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Hayer ◽  
Dirk Brandis ◽  
Alexander Immel ◽  
Julian Susat ◽  
Montserrat Torres-Oliva ◽  
...  

AbstractThe historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s—including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


Sign in / Sign up

Export Citation Format

Share Document