Design and development of pressurized aqueous fertilizer application system for seeder

2020 ◽  
Vol 44 (01) ◽  
pp. 12-19
Author(s):  
Satish Devram Lande ◽  
Indra Mani

In dry land areas, seed germination greatly affected by insufficient soil moisture during sowing. Nitrogenous fertilizers like granular urea remain unavailable due to inadequate soil moisture to dissolve, dilute and convey it to root zone level. Precise application of aqueous fertilizer at root zone depth at the time of sowing enhances seed germination percentage by increasing available soil moisture as per the soil-moisture-crop requirement. A pressurized aqua ferti metering system was designed and developed for application of aqueous fertilizer diluted with water along the side of seed. The prototype consisted of pressurized aqueous fertilizer metering system through positive displacement pump, stationary opening with agitator type seed metering system and shovel type furrow opener with provision of carrying seed and aqueous fertilizer delivery tubes. A pressurized aqueous fertilizer application system consisted of rotary gear pump to vary pump rotational speed and circular distributor for uniform distribution of aqueous fertilizer. The flow rate and pressure were controlled by control valve for required amount of aqueous fertilizer. Three nozzles of size 8, 10 and 12 mm were evaluated at different pump rotational speeds (1800, 1440, 1152, 1080 and 864 rpm) and different control valve positions (0, 2, 4 and 6 kg/cm2 ) for desired flow rate. The discharge rate at a particular pressure was found to vary linearly with the Pump rotational speed and decreased as the line pressure increased. The desired flow rate in pressurized pumping system was obtained in a nozzle of size 10 cm up to a maximum pump speed of 1440 rpm and for a line pressure of less than 4 kg/cm2 .

2013 ◽  
Vol 303-306 ◽  
pp. 1465-1469
Author(s):  
Ying Jie Yu ◽  
Zhen Yang Ge ◽  
Shu Hui Zhang

A variable rate fertilizer application system with ARM microprocessor as control core was developed. The structure and realization principle of the system were introduced. The system consists of two velocity sensors of photoelectric encoder and proximity transducer, an ARM controller, and an executive unit of stepper motor. The system has automatic and manual variable rate fertilization modes. In the automatic mode, the system can be positioned automatically without GPS, and controls the stepping motor’s rotational speed according to the fertilizing amount in different grid to realize variable rate fertilization. In the manual mode, the controller combines the fertilizing amount in different grid input manually through the keys with the velocity of the applicator, and calculates the stepping motor’s rotational speed to realize the variable rate fertilizer application. The applicator working status can be seen in LCD on the controller. The experimental results show that the system can work properly.


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


Author(s):  
Valery Yashin

Представлены материалы исследований формирования режима влажности и динамики грунтовых вод орошаемых солонцовых комплексных почв при различных способах полива, проведенные в Волгоградском Заволжье. Установлена значительная неравномерность распределения влажности почвы при поливах дождеванием. Отмечается поверхностный сток по микрорельефу до 30% от поливной нормы, что приводит к недостаточности увлажнения корневой зоны на солонцах и переувлажнению почв в понижениях микрорельефа и потере оросительной воды на инфильтрационное питание грунтовых вод.The article presents the materials of research on the formation of the humidity regime and dynamics of ground water of irrigated saline complex soils under various irrigation methods, conducted in the Volgograd Zavolzhye. A significant unevenness in the distribution of soil moisture during irrigation with sprinkling has been established. There is a surface runoff on the microrelief of up to 30% of the irrigation norm, which leads to insufficient moisture of the root zone on the salt flats and waterlogging of the soil in the microrelief depressions and loss of irrigation water for infiltration feed of ground water.


2019 ◽  
Vol 7 (2) ◽  
pp. 253
Author(s):  
I Made Andi Purnama Wijaya ◽  
Yohanes Setiyo ◽  
I Wayan Tika

Suhu tanah adalah salah satu sifat fisik tanah yang secara langsung mempengaruhi pertumbuhan tanaman pakcoy. Tujuan penelitian ini adalah (1) untuk menganalisis suhu di zona perakaran, (2) menganalisis hubungan antara dosis pemupukan mempergunakan kompos dengan suhu di zona perakaran dan (3) untuk menganalis suhu yang optimum untuk produktivitas dan kualitas pakcoy yang dihasilkan saat panen. Rancangan penelitian yang digunakan rancangan acak lengkap, dengan lima perlakuan dan tiga ulangan. Perlakuan tersebut adalah P0 : dosis kompos 0 kg/m2, P1 : dosis kompos 1 kg/m2, P2 : dosis kompos 2 kg/m2, P3 : dosis kompos 3 kg/m2, dan P4 : dosis kompos 4 kg/m2. Parameter yang diamati pada penelitian ini adalah suhu udara, suhulingkungan, kadar air tanah dan produktivitas. Padamalam hari suhu tanah di zona perakaran lebih tinggi 0,59 oC dari pada suhu lingkungan. Suhu tanah di zona perakaran terendah dan tertinggi adalah 18,02 oC dan 21,94 oC. Suhu tanah malam hari dan siang hari untuk dosis 0-5kg/m2 masih toleran pada tanaman pacoy. Berat kering tanaman pakcoy tertinggi pada perlakuan dosis kompos 4kg/m2 denganberat 92,21 gram/tanaman dan terendah pada perlakuan kontrol dengan berat 71,82 gram/tanaman.   The temperature of the soil is one of the physical properties of the soil, this soil physical properties direc2tly affect plant growth pakcoy.  The purpose of this research are (1) to analyze the temperature at root zone, temperature inside and out of the mini greenhouse, (2) analyze the relationship between temperature at root zone  with doses of compost fertilizer application and 3) to analyze the optimum dose of compost based on productivity and quality of the pakcoy is generated when the harvest. The design of the research used randomized complete design, with five treatments and three replicates. The treatment is P0: a dose of compost 0 kg/m, P1: a dose of compost 1 kg/m2, P2: a dose of compost 2 kg/m2, P3: the dose of compost 3 kg/m2, and P4: a dose of compost 4 kg/m2. The parameters observed in this research is the air temperature, the temperature of the environment, ground water levels and productivity.  At night the temperature of the soil rooting zone higher at 0.59 ºC than at the temperature of the environment. Soil temperature at root zone the lowest  and the highest  are 18.02 oC and 21.94 oC.  The temperature of the soil the night and during the day for dose 0-5 kg/m2 was still tolerant plants pakcoy. Dry weight of the plant the highest pakcoy on the treatment dose of compost 4 kg/m2  with a weight of 92.21 grams/lowest at the treatment plant and the control by the weight of 71.82 grams/plant.


2020 ◽  
Vol 5 (1) ◽  
pp. 317-324
Author(s):  
Kayla Snyder ◽  
Christopher Murray ◽  
Bryon Wolff

AbstractTo address agricultural needs of the future, a better understanding of plastic mulch film effects on soil temperature and moisture is required. The effects of different plant type and mulch combinations were studied over a 3.5-month period to better grasp the consequence of mulch on root zone temperature (RZT) and moisture. Measurements of (RZT) and soil moisture for tomato (Solanum lycopersicum), pepper (Capsicum annuum) and carrot (Daucus carota) grown using polyolefin mulch films (black and white-on-black) were conducted in Ontario using a plot without mulch as a control. Black mulch films used in combination with pepper and carrot plants caused similar RZTs relative to uncovered soil, but black mulch film in combination with tomato plants caused a reduction in RZT relative to soil without mulch that increased as plants grew and provided more shade. White-on-black mulch film used in combination with tomatoes, peppers or carrots led to a reduction in RZT relative to soil without mulch that became greater than the temperature of soil without mulch. This insulative capability was similarly observed for black mulch films used with tomato plants. Apart from white-on-black film used in combination with tomatoes, all mulch film and plant combinations demonstrated an ability to stabilize soil moisture relative to soil without mulch. RZT and soil moisture were generally stabilized with mulch film, but some differences were seen among different plant types.


Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5211
Author(s):  
Maedeh Farokhi ◽  
Farid Faridani ◽  
Rosa Lasaponara ◽  
Hossein Ansari ◽  
Alireza Faridhosseini

Root zone soil moisture (RZSM) is an essential variable for weather and hydrological prediction models. Satellite-based microwave observations have been frequently utilized for the estimation of surface soil moisture (SSM) at various spatio-temporal resolutions. Moreover, previous studies have shown that satellite-based SSM products, coupled with the soil moisture analytical relationship (SMAR) can estimate RZSM variations. However, satellite-based SSM products are of low-resolution, rendering the application of the above-mentioned approach for local and pointwise applications problematic. This study initially attempted to estimate SSM at a finer resolution (1 km) using a downscaling technique based on a linear equation between AMSR2 SM data (25 km) with three MODIS parameters (NDVI, LST, and Albedo); then used the downscaled SSM in the SMAR model to monitor the RZSM for Rafsanjan Plain (RP), Iran. The performance of the proposed method was evaluated by measuring the soil moisture profile at ten stations in RP. The results of this study revealed that the downscaled AMSR2 SM data had a higher accuracy in relation to the ground-based SSM data in terms of MAE (↓0.021), RMSE (↓0.02), and R (↑0.199) metrics. Moreover, the SMAR model was run using three different SSM input data with different spatial resolution: (a) ground-based SSM, (b) conventional AMSR2, and (c) downscaled AMSR2 products. The results showed that while the SMAR model itself was capable of estimating RZSM from the variation of ground-based SSM data, its performance increased when using downscaled SSM data suggesting the potential benefits of proposed method in different hydrological applications.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


Sign in / Sign up

Export Citation Format

Share Document