scholarly journals Effect of essential oils of Myrtaceae plants on the Penicillium commune

10.5219/1106 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 604-613
Author(s):  
Dana Tančinová ◽  
Denisa Foltínová ◽  
Zuzana Mašková ◽  
Jana Štefániková ◽  
Július Árvay

The aim of this research was to determine the inhibitory effect of vapor phase of five essential oils (EOs) on the growth of seven strains of Penicillium commune isolated from moldy milk products. Another objective was to determine the minimum inhibitory doses (in vitro and probit analyses) of EOs, which at concentration 625 μL.L-1 of air completely inhibited the growth of all strains. The antifungal activity was evaluated by the micro-atmosphere method. The essential oils used in this study were extract of plants from family Myrtaceae. Only one essential oil – clove (from Syzygium aromaticum L.; leaves) completely inhibited the growth of all strains during cultivation at 25 °C and 5 °C. Eucalyptus essential oil (from Eucaliptus globulus; leaves), tea tree essential oil (from Melaleuca alternifolia Cheel; leaves), cajeput essential oil (from Melaleuca leucadendra L.; leaves and twigs), niaouli essential oil (from Melaleuca quinquenervia (Cav.) S.T.Blake; leaves) have different effects on the growth of P. commune strains. The order of tested essential oils according to the inhibition effect on the growth of the strains of P. commune (from the strongest to the weakest effect) was: clove > tea tree > cajeput > niaouli > eucalyptus. Clove EO that completely inhibited the growth of all strains was used to determine minimum inhibitory doses (MIDs). The MIDs were 125 µL.L-1 of air for two strains of P. commune and 250 µL.L-1 of air for five strains of P. commune on the 7th and 14th day of cultivation, also. Using probit analysis, predicted MIDs90 and MIDs50 were calculated. The MIDs90 were determined from 104.93 to 301.37 µL.L-1 of air.

2020 ◽  
Vol 9 (10) ◽  
pp. e5049108788
Author(s):  
Luciane Neris Cazella ◽  
Herika Line de Marko de Oliveira ◽  
Wanessa de Campos Bortolucci ◽  
Isabelle Luiz Rahal ◽  
Irinéia Paulina Baretta ◽  
...  

Baccharis dracunculifolia, native to Brazil and the main source of “green propolis”, has been reported with several biological activities, and may be a source of bovine tick control substituting synthetic acaricides. Objective: to evaluate the in vitro and ex situ acaricidal activity of B. dracunculifolia leaf and flower essential oils against Rhipicephalus microplus. Methodology: the essential oils were extracted by hydrodistillation and analyzed by a gas chromatography coupled to mass spectrometry; the acaricidal activity of the essential oil was evaluated in vitro against adult females and against the egg hatchability; moreover, the acaricidal activity against tick larvae was evaluated in vitro and ex situ. Results: the major class of the essential oils was oxygenated sesquiterpene (55.1% leaves 50.4% flowers) and the main compounds were (21.5% leaves; 20.6% flowers) and spathulenol (21.8% leaves; 20.3% flowers). The essential oil at 500 mg/mL was effective to control egg hatchability with a reduction of egg laying capacity and decrease of number of adult ticks and larvae. The larvicidal activity of the essential oil had LC99.9 from 35 to 37 mg/mL by probit analysis, and the essential oil from 11 to 14 mg/mL presented 85 to 95% of treatment efficiency in the ex situ test. Conclusion: B. dracunculifolia leaf and flower essential oils are stable and have application potential to control bovine ticks.


2019 ◽  
Vol 136 ◽  
pp. 06006
Author(s):  
Qiyu Lu ◽  
Ji Liu ◽  
Caihong Tu ◽  
Juan Li ◽  
Chunlong Lei ◽  
...  

To determine the antibacterial effect of 34 plant essential oils on Alternaria alternata, 34 plant essential oils such as asarum essential oil, garlic essential oil, and mustard essential oil are used as inhibition agents to isolate A. alternata from citrus as indicator bacteria, through the bacteriostasis test and drug susceptibility test, the types of essential oils with the best inhibitory effect were screened and their concentration was determined. The results showed that the best inhibition effect was mustard essential oil with a minimum inhibitory concentration of 250 μl/L and a minimum bactericidal concentration of 250 μl/L. Followed by the Litsea cubeba essential oil and basil oil, the minimum inhibitory concentration is 500 μl/L.


2020 ◽  
Vol 10 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Talia Serseg ◽  
Khedidja Benarous ◽  
Mohamed Yousfi

Background: Essential oils have been used for centuries. EOs are gaining increasing interest because of their acceptance by consumers and their safe status. For the first time, the effect of essential oils on the inhibition of lipases has been investigated in this work. Objective: We aimed in this study to investigate in vitro the inhibitory effects of the three essential oils of most used spices: Peppermint (Mentha piperita L.), cinnamon (Cinnamomum zeylanicum L.) and Cloves (Syzygium aromaticum L. Merr. et Perry) against Candida rugose lipase. In silico studies using molecular docking have been achieved to study the inhibition mechanism of major compounds of EO: menthol, carvacrol, eugenol and cinnamylaldehyde toward CRL. Methods: The inhibitory effect of three essential oils were determined by candida rugosa enzyme and pNP-L as substrate using spectrophotometry. Autodock vina was used for molecular docking with 50 runs. Results: We have found that these essential oils have a strong inhibitory effect with IC50 values 1.09, 1.78 and 1.13 mg/ml compared with Orlistat 0.06 mg/ml. The results show competitive inhibition for the three major compounds Menthol, Carvacrol and Eugenol with uncompetitive inhibition for Cinnamaldehyde. Different repetition ratios of hydrogen bonds and hydrophobic interactions were observed. The saved interactions were with His449, Ser209, Gly123, Gly124 and Phe344 for all molecules. Conclusion: These observations support using and considering essential oils and their major compounds as good sources for design new drugs to treat candidiasis and other diseases related to Lipases.


2007 ◽  
Vol 54 (2) ◽  
pp. 106-114
Author(s):  
D. Markovic ◽  
B. Mirkovic ◽  
T. Jovanovic ◽  
A. Knezevic ◽  
T. Nastovski

Essential oils are widely used in medicine, dentistry and cosmetology as flavour and odour corrigents in various substances for oral hygiene. The aim of this study was to present comprehensively the possibilities for application of Melaleuca Alternifolia essential oil in dentistry based on the analysis of contemporary scientific and professional publications. The application of Tea tree essential oil in the treatment of periodontal, fungal and viral diseases is very efficient. The study of antimicrobial potential of ten different essential oils confirmed the efficiency of Tea tree oil against numerous Gram+ and Gram- bacteria. In vitro studies of bacteriostatic, bactericidal and fungicidal effect of Tea tree oil solution against ten different microorganisms confirmed sensitivity of the following microorganisms: Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum and Porphyromonas gingivalis, and slightly weaker effect against Streptococcus Mutans and Prevotella intermedia. Tea tree is very effective in the treatment of various diseases and is an introduction and momentum for the application of plant substances in the treatment of numerous diseases in dentistry. .


2016 ◽  
Vol 9 (4) ◽  
pp. 525-534 ◽  
Author(s):  
C. Soares ◽  
H. Morales ◽  
J. Faria ◽  
A.C. Figueiredo ◽  
L.G. Pedro ◽  
...  

The aim of this work was to assess the inhibitory effect of essential oils on the growth and aflatoxin production of Aspergillus parasiticus, as well as to correlate it with the chemical composition of the essential oils. Essential oils from six aromatic species (Cymbopogon citratus, Eucalyptus globulus, Origanum vulgare, Ruta graveolens, Salvia officinalis, Satureja montana) were characterised by gas chromatography and tested for their inhibitory effect against A. parasiticus strain MUM 92.02. Furthermore, the in vitro inhibitory effects of these essential oils on the production of aflatoxins were evaluated by HPLC. Results showed that all essential oils retarded the time for visible growth. Growth rate was affected differently depending on the essential oil. S. montana essential oil prevented growth in all cases. The essential oil of R. graveolens inhibited most of the aflatoxin production even though growth inhibition was low, while with C. citratus essential oil trace levels of aflatoxins were detected. Essential oils containing carvacrol and/or thymol (S. montana and O. vulgare) have the highest activity against fungal growth, while an essential oil (R. graveolens) containing 2-undecanone and 8-phenyl-2-octanone inhibited the synthesis of aflatoxins. Although the main component of this essential oil was 2-undecanone (91%), when pure 2-undecanone was tested, it did not inhibit aflatoxin production. Inhibition activity is probably due to the recently identified minor compound or to a synergistic effect. Essential oils seem to be a good alternative to fungicides not only because of environmental issues but also because they do not seem to enhance mycotoxin production as it has been reported for some fungicides.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 546
Author(s):  
Nikola Puvača ◽  
Jovana Milenković ◽  
Tamara Galonja Galonja Coghill ◽  
Vojislava Bursić ◽  
Aleksandra Petrović ◽  
...  

The worldwide problem of infectious diseases has appeared in recent years, and antimicrobial agents are crucial in reducing disease emergence. Nevertheless, the development and distribution of multidrug-resistant (MDR) strains in pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Salmonella Typhi and Citrobacter koseri, has become a major society health hazard. Essential oils could serve as a promising tool as a natural drug in fighting the problem with these bacteria. The current study aimed to investigate the antimicrobial effectiveness of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel), rosemary (Rosmarinus officinalis L.), eucalyptus (Eucalyptus obliqua L’Hér.), and lavender (Lavandula angustifolia Mill) essential oils. The antimicrobial properties of essential oils were screened against four pathogenic bacteria, E. coli, S. aureus, S. Tyhpi, and C. koseri, and two reference bacterial strains, while for the testing, the agar well diffusion method was used. Gas chromatography (GC) and gas chromatography–mass spectrometric (GC–MSD) analyses were performed on essential oils. The obtained results showed that M. alternifolia essential oil is the richest in terpinen-4-ol, R. officinalis and E. oblique essential oils in 1,8-cineole, and L. angustifolia essential oil in α-terpinyl acetate. In addition, the main bioactive compounds present in the essential oil of tea tree are rich in α-pinene (18.38%), limonene (7.55%) and γ-terpinene (14.01%). The essential oil of rosemary is rich in α-pinene (8.38%) and limonene (11.86%); eucalyptus essential oil has significant concentrations of α-pinene (12.60%), p-cymene (3.24%), limonene (3.87%), and γ-terpinene (7.37%), while the essential oil of lavender is rich in linalool (10.71%), linalool acetate (9.60%), α-terpinyl acetate (10.93%), and carbitol (13.05%) bioactive compounds, respectively. The obtained results from the in vitro study revealed that most of the essential oils exhibited antimicrobial properties. Among the tested essential oils, tea tree was discovered to demonstrate the strongest antimicrobial activity. The recorded MIC of S. Typhi was 6.2 mg/mL, 3.4 mg/mL of C. koseri, 3.1 mg/mL of E. coli, and 2.7 mg/mL of E. Coli ATCC 25922, compared to M. alternifolia. Similarly, only S. aureus ATCC 25923 showed antimicrobial activity towards R. officinalis (1.4 mg/mL), E. oblique (2.9 mg/mL), and L. angustifolia (2.1 mg/mL). Based on the obtained results, it is possible to conclude that tea tree essential oil might be used as an ecological antimicrobial in treating infectious diseases caused by the tested pathogens.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


2015 ◽  
Vol 76 ◽  
pp. 647-652 ◽  
Author(s):  
Yousmel Aleman Gaínza ◽  
Luciana Ferreira Domingues ◽  
Oriela Pino Perez ◽  
Márcio Dias Rabelo ◽  
Eugenio Roque López ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document