Identification of Cumulonimbus Cloud using Sensor Data of NOAA Satellite Captured by Low Cost Flower Cross Dipole

Author(s):  
Yenniwarti Rafsyam ◽  
Lingga Ghufira Oktariza ◽  
. Jonifan ◽  
Indra Z ◽  
Eri Ester Khairas
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


2021 ◽  
Vol 13 (8) ◽  
pp. 4496
Author(s):  
Giuseppe Desogus ◽  
Emanuela Quaquero ◽  
Giulia Rubiu ◽  
Gianluca Gatto ◽  
Cristian Perra

The low accessibility to the information regarding buildings current performances causes deep difficulties in planning appropriate interventions. Internet of Things (IoT) sensors make available a high quantity of data on energy consumptions and indoor conditions of an existing building that can drive the choice of energy retrofit interventions. Moreover, the current developments in the topic of the digital twin are leading the diffusion of Building Information Modeling (BIM) methods and tools that can provide valid support to manage all data and information for the retrofit process. This paper shows the aim and the findings of research focused on testing the integrated use of BIM methodology and IoT systems. A common data platform for the visualization of building indoor conditions (e.g., temperature, luminance etc.) and of energy consumption parameters was carried out. This platform, tested on a case study located in Italy, is developed with the integration of low-cost IoT sensors and the Revit model. To obtain a dynamic and automated exchange of data between the sensors and the BIM model, the Revit software was integrated with the Dynamo visual programming platform and with a specific Application Programming Interface (API). It is an easy and straightforward tool that can provide building managers with real-time data and information about the energy consumption and the indoor conditions of buildings, but also allows for viewing of the historical sensor data table and creating graphical historical sensor data. Furthermore, the BIM model allows the management of other useful information about the building, such as dimensional data, functions, characteristics of the components of the building, maintenance status etc., which are essential for a much more conscious, effective and accurate management of the building and for defining the most suitable retrofit scenarios.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 291 ◽  
Author(s):  
Hamdi Sahloul ◽  
Shouhei Shirafuji ◽  
Jun Ota

Local image features are invariant to in-plane rotations and robust to minor viewpoint changes. However, the current detectors and descriptors for local image features fail to accommodate out-of-plane rotations larger than 25°–30°. Invariance to such viewpoint changes is essential for numerous applications, including wide baseline matching, 6D pose estimation, and object reconstruction. In this study, we present a general embedding that wraps a detector/descriptor pair in order to increase viewpoint invariance by exploiting input depth maps. The proposed embedding locates smooth surfaces within the input RGB-D images and projects them into a viewpoint invariant representation, enabling the detection and description of more viewpoint invariant features. Our embedding can be utilized with different combinations of descriptor/detector pairs, according to the desired application. Using synthetic and real-world objects, we evaluated the viewpoint invariance of various detectors and descriptors, for both standalone and embedded approaches. While standalone local image features fail to accommodate average viewpoint changes beyond 33.3°, our proposed embedding boosted the viewpoint invariance to different levels, depending on the scene geometry. Objects with distinct surface discontinuities were on average invariant up to 52.8°, and the overall average for all evaluated datasets was 45.4°. Similarly, out of a total of 140 combinations involving 20 local image features and various objects with distinct surface discontinuities, only a single standalone local image feature exceeded the goal of 60° viewpoint difference in just two combinations, as compared with 19 different local image features succeeding in 73 combinations when wrapped in the proposed embedding. Furthermore, the proposed approach operates robustly in the presence of input depth noise, even that of low-cost commodity depth sensors, and well beyond.


2013 ◽  
Vol 344 ◽  
pp. 107-110
Author(s):  
Shun Ren Hu ◽  
Ya Chen Gan ◽  
Ming Bao ◽  
Jing Wei Wang

For the physiological signal monitoring applications, as a micro-controller based on field programmable gate array (FPGA) physiological parameters intelligent acquisition system is given, which has the advantages of low cost, high speed, low power consumption. FPGA is responsible for the completion of pulse sensor, the temperature sensor, acceleration sensor data acquisition and serial output and so on. Focuses on the design ideas and architecture of the various subsystems of the whole system, gives the internal FPGA circuit diagram of the entire system. The whole system is easy to implement and has a very good promotional value.


2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7919
Author(s):  
Sjoerd van Ratingen ◽  
Jan Vonk ◽  
Christa Blokhuis ◽  
Joost Wesseling ◽  
Erik Tielemans ◽  
...  

Low-cost sensor technology has been available for several years and has the potential to complement official monitoring networks. The current generation of nitrogen dioxide (NO2) sensors suffers from various technical problems. This study explores the added value of calibration models based on (multiple) linear regression including cross terms on the performance of an electrochemical NO2 sensor, the B43F manufactured by Alphasense. Sensor data were collected in duplicate at four reference sites in the Netherlands over a period of one year. It is shown that a calibration, using O3 and temperature in addition to a reference NO2 measurement, improves the prediction in terms of R2 from less than 0.5 to 0.69–0.84. The uncertainty of the calibrated sensors meets the Data Quality Objective for indicative methods specified by the EU directive in some cases and it was verified that the sensor signal itself remains an important predictor in the multilinear regressions. In practice, these sensors are likely to be calibrated over a period (much) shorter than one year. This study shows the dependence of the quality of the calibrated signal on the choice of these short (monthly) calibration and validation periods. This information will be valuable for determining short-period calibration strategies.


Author(s):  
Pedro Lucas ◽  
Jorge Silva ◽  
Filipe Araujo ◽  
Catarina Silva ◽  
Paulo Gil ◽  
...  

With the raising of environmental concerns regarding pollution, interest in monitoring air quality is increasing. However, air pollution data is mostly originated from a limited number of government-owned sensors, which can only capture a small fraction of reality. Improving air quality coverage in-volves reducing the cost of sensors and making data widely available to the public. To this end, the NanoSen-AQM project proposes the usage of low-cost nano-sensors as the basis for an air quality monitoring platform, capa-ble of collecting, aggregating, processing, storing, and displaying air quality data. Being an end-to-end system, the platform allows sensor owners to manage their sensors, as well as define calibration functions, that can im-prove data reliability. The public can visualize sensor data in a map, define specific clusters (groups of sensors) as favorites and set alerts in the event of bad air quality in certain sensors. The NanoSen-AQM platform provides easy access to air quality data, with the aim of improving public health.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012189
Author(s):  
J Virbulis ◽  
M Sjomkane ◽  
M Surovovs ◽  
A Jakovics

Abstract In addition to infection with SARS-CoV-2 via direct droplet transmission or contact with contaminated surfaces, infection via aerosol transport is a predominant pathway in indoor environments. The developed numerical model evaluates the risk of a COVID-19 infection in a particular room based on measurements of temperature, humidity, CO2 and particle concentration, the number of people and instances of speech, coughs and sneezing using a dedicated low-cost sensor system. The model can dynamically provide the predicted risk of infection to the building management system or people in the room. The effect of temperature, humidity and ventilation intensity on the infection risk is shown. Coughing and especially sneezing greatly increase the probability of infection in the room; therefore distinguishing these events is crucial for the applied measurement system.


Sign in / Sign up

Export Citation Format

Share Document