scholarly journals THE GLYCEROL´S WAY. A BRIEF REVIEW OF OPPORTUNITIES

2019 ◽  
Vol 49 (3) ◽  
pp. 163-173
Author(s):  
SYLVIA I. OROZCO-NUÑEZ ◽  
LOURDES DIAZ-JIMENEZ ◽  
SALVADOR CARLOS-HERNANDEZ

In this paper, the recent state of the art, for about the last 4 years, of glycerol revalorization is presented. The study is focused on the vast opportunities associated to glycerol transformation. The operating conditions related to catalytic or biological conversion of crude glycerol such as catalytic deactivation, use of solvents, reaction type, selectivity yields and production cost are also analyzed. It was found that crude glycerol is a promising sustainable source of commodities such as hydrogen, solketal, ethanol, methanol, acrolein, carbonate, epichlorohydrin, among others. Also, the main challenges related to glycerol revalorization such as catalytic stability, selectivity and conversion yields, as well as cost on catalyst regeneration and novel processes are identified.

Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Savino Depalo ◽  
Pio Astrua ◽  
...  

Abstract The overall fraction of the power produced by renewable sources in the energy market has significantly increased in recent years. The power output of most of these clean sources is intrinsically variable. At present day and most likely in the upcoming future, due to the lack of inexpensive and reliable large energy storage systems, conventional power plants burning fossil fuels will still be part of the energy horizon. In particular, power generators able to promptly support the grid stability, such as gas turbines, will retain a strategic role. This new energy scenario is pushing gas turbine producers to improve the flexibility of their turbomachines, increasing the need for reliable numerical tools adopted to design and validate the new products also in operating conditions far from the nominal one. Especially when dealing with axial compressors, i.e. machines experiencing intense adverse pressure gradients, complex flow structures and severe secondary flows, CFD modelling of offdesign operation can be a real challenge. In this work, a state-of-the art CFD framework for RANS analysis of axial compressors is presented. The various aspects involved in the whole setup are discussed, including boundary conditions, meshing strategies, mixing planes modelling, tip clearance treatment, shroud leakages and turbulence modelling. Some experiences about the choice of these aspects are provided, derived from a long-date practice on this kind of turbomachines. Numerical results are reported for different full-scale compressors of the Ansaldo Energia fleet, covering a wide range of operating conditions. Furthermore, details about the capability of the setup to predict compressor performance and surge-margin have been added to the work. In particular, the setup surge-margin prediction has been evaluated in an operating condition in which the turbomachine experiences experimental stall. Finally, thanks to several on-field data available at different corrected speeds for operating conditions ranging from minimum to full load, a comprehensive validation of the presented numerical framework is also included in the paper.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 291 ◽  
Author(s):  
Thijs A. Peters ◽  
Marit Stange ◽  
Rune Bredesen

We report on the effect of butane and butylene on hydrogen permeation through thin state-of-the-art Pd–Ag alloy membranes. A wide range of operating conditions, such as temperature (200–450 °C) and H2/butylene (or butane) ratio (0.5–3), on the flux-reducing tendency were investigated. In addition, the behavior of membrane performance during prolonged exposure to butylene was evaluated. In the presence of butane, the flux-reducing tendency was found to be limited up to the maximum temperature investigated, 450 °C. Compared to butane, the flux-reducing tendency in the presence of butylene was severe. At 400 °C and 20% butylene, the flux decreases by ~85% after 3 h of exposure but depends on temperature and the H2/butylene ratio. In terms of operating temperature, an optimal performance was found at 250–300 °C with respect to obtaining the highest absolute hydrogen flux in the presence of butylene. At lower temperatures, the competitive adsorption of butylene over hydrogen accounts for a large initial flux penalty.


Author(s):  
Sajjad Z. Meymand ◽  
Milad Hosseinipour ◽  
Mehdi Ahmadian

This paper discusses the development of a state of the art single-wheel roller rig for studying contact mechanics and dynamics in railroad applications. The use of indoor-based simulation tools has become a mainstay in vehicle testing for the automotive and railroad industries. In contrast to field-testing, roller rigs offer a controlled laboratory environment that can provide a successful path for obtaining data on the mechanics and dynamics of railway systems for a variety of operating conditions. The idea to develop a laboratory test rig started from the observation that there is a need for better-developed testing fixtures capable of accurately explaining the relatively unknown physics of the wheel-rail contact mechanics and dynamics. Developing a better understanding of such physics would assist with designing faster, safer, and more efficient railroad systems. A review of the existing roller rigs indicated that many desired functional requirements for studying contact mechanics are not readily available. The Virginia Tech Railway Technologies Laboratory (RTL) has embarked on a mission to develop a state-of-the-art testing facility that will allow experimental testing for contact mechanics in a dynamic, controlled, and consistent manner. The VT roller rig is intended to allow for actively controlling all the wheel-rail interface degrees of freedom: cant angle, angle of attack, and lateral displacement. Two AC synchronous servomotors, accompanied with proper gearheads, accurately drive the rotating wheels. A novel force measurement system, suitable for steel on steel contact, is configured to precisely measure the contact forces and torques. The control architecture is developed based on the SynqNet data acquisition system offered by Kollmorgen, the drive-motor and actuator supplier. The Synqnet provides a unified communication protocol between actuators, drives, and data acquisition system; therefore eliminating any difficulty with data conversion among these units. Other auxiliary sensors and measurement systems are implemented to help with characterizing the contact mechanics and contact geometry. This paper will describe the main steps in the design process of the VT roller rig and the final design solution selected. It will also present the testing capabilities of the rig. The design analysis indicates that the rig can successfully meet the set requirements: additional accuracy in measurements, and better control on the design of experiments.


2018 ◽  
Vol 924 ◽  
pp. 782-785 ◽  
Author(s):  
Bhagyalakshmi Kakarla ◽  
Thomas Ziemann ◽  
Selamnesh Nida ◽  
Elias Doenni ◽  
Ulrike Grossner

This paper presents an insight into the short circuit (SC) capability of Rohm’s discrete 1.2 kV, 80 mΩ state-of-the-art silicon carbide (SiC) double trench metal-oxide-semiconductor field effect transistor (MOSFET). SC measurements are performed to compare the behavior of Wolfspeed’s similarly rated 1.2 kV, 80 mΩ planar MOSFET with the Rohm trench devices. Short circuit withstand time (SCWT) of both designs under nominal operating conditions at room temperature is measured by performing destructive SC tests.


2018 ◽  
Vol 157 ◽  
pp. 03011
Author(s):  
Mateusz Janowski ◽  
Danuta Jasińska-Choromańska ◽  
Dymitr Osiński ◽  
Marcin Zaczyk

In this paper, a model of an orthotic robot’s lower limb rotation system is presented. The system is intended for use in typical contemporary orthotic robots such as the ‘Veni-Prometheus’ System for Verticalization and Aiding Motion designed at the Faculty of Mechatronics, Warsaw University of Technology. In the paper, the state of the art is briefly stated, with the relatively low number of orthotic robots allowing realization of pivoting turns highlighted. The intended two-stage pivoting turning movement is analyzed in detail and the operating conditions as well as limitations of the turning module are indicated. The conception of a turning module introduces additional degree of freedom to the existing orthotic robot designs by realizing the rotation about the lengthwise axis in the thigh link. A three-dimensional model and its analysis are shown. The proposed design ensures the necessary movement of the lower limb and the torso of an impaired person during the execution of pivoting turn while remaining compact in order to ease the introduction of the turning system to different orthotic robot designs.


Author(s):  
Shai Birmaher ◽  
Philipp W. Zeller ◽  
Peter Wirfalt ◽  
Yedidia Neumeier ◽  
Ben T. Zinn

State of the art afterburner combustion employs spray bars and flameholders in a long cavity, which adds significant length and weight to the engine and increases its observability. This paper presents a feasibility study for the development of a compact “prime and trigger” afterburner that eliminates the flameholders and reduces the length of the engine. In this concept, fuel is injected just upstream or in between the turbine stages in such a manner that upon exiting the turbine the fuel has evaporated and premixed with the flow without significant combustion, a process referred to as “priming”. Downstream of the turbine, combustion is initiated either through autoignition or by using a low power plasma radical generator being developed in a parallel investigation to “trigger” the combustion process. The prime and trigger injection and ignition scheme has been investigated using an experimental setup that simulates the operating conditions in a typical gas turbine engine. For this investigation, a trigger is not used, and combustion of the fuel occurs through autoignition. A physics-based theoretical model was developed to predict the location of autoignition for given flow and spray properties and injection locations. The theoretical predictions and the experimental results obtained using thermocouple measurements and CH* chemiluminescence confirm the feasibility of the prime and trigger concept by demonstrating the predictable and controlled autoignition of the afterburner fuel.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6608
Author(s):  
Prapatsorn Borisut ◽  
Aroonsri Nuchitprasittichai

Methanol production via carbon dioxide (CO2) hydrogenation is a green chemical process, which can reduce CO2 emission. The operating conditions for minimum methanol production cost of three configurations were investigated in this work. An artificial neural network with Latin hypercube sampling technique was applied to construct model-represented methanol production. Price sensitivity was performed to study the impacts of the raw materials price on methanol production cost. Price sensitivity results showed that the hydrogen price has a large impact on the methanol production cost. In mathematical modeling using feedforward artificial neural networks, four different numbers of nodes were used to train artificial neural networks. The artificial neural network with eight numbers of nodes showed the most suitable configuration, which yielded the lowest percent error between the actual and predicted methanol production cost. The optimization results showed that the recommended process design among the three studied configurations was the process of methanol production with two reactors in series. The minimum methanol production cost obtained from this configuration was $888.85 per ton produced methanol, which was the lowest methanol production cost among all configurations.


Sign in / Sign up

Export Citation Format

Share Document