scholarly journals Biological control of root-knot nematode Meloidogyne incognita infesting cucumber Cucumis sativus L. cvs. Alfa by the nematode-trapping fungus Dactylaria brochopaga under field conditions

2013 ◽  
Vol 4 (4) ◽  
pp. 435-440 ◽  
Author(s):  
E. Noweer ◽  
H. Aboul-Eid
2009 ◽  
Vol 34 (2) ◽  
pp. 1077-1090
Author(s):  
A. H. Kheraba ◽  
A. A. Osman ◽  
M. M. Shahien ◽  
Y. T. E. EL-Lathiy ◽  
Eman B. El-Remaly

2021 ◽  
Vol 5 (2) ◽  
pp. 596-620
Author(s):  
Oluwatoyin E. Bello ◽  
Nkechi B. Izuogu ◽  
Oluwasesan M. Bello

Screen-house and field experiments were carried out to evaluate and compare the activities of Root grow (mycorrhiza fungi) and broiler droppings (singly and both) on root-knot nematode, Meloidogyne incognita infecting Cucumber, Cucumis sativus (L). The experiment was designed as a 2 by 5 factorial fitted into a Complete Randomised Design (CRD) and Randomized Complete Block Design (RCBD) for screen house and field experiments respectively. Two levels each of the two treatments were evaluated both in the screen house and on the field. Root-grow (mycorrhiza fungi) was evaluated at the rate of 0.5 g and 1.0 g while broiler droppings were evaluated at the rate of 50 g and 100 g. The effects of treatments on vegetative growth as well as nematode damage and population were determined both in the screen house and on the field. All data collected were subjected to Analysis of Variance (ANOVA) and where treatment means were significant, multiple comparisons of treatments were done using Tukey’s honesty significant difference at a 5 % level of significance. Broiler droppings at 100 g and 50 g were more effective in controlling nematode than the two levels of Root grow (mycorrhiza fungi). Plant growth was best with broiler droppings at 100 g followed by broiler droppings at 50 g. Nematode population was reduced in all plant treated and were less galled compared with the control. The results showed that broiler droppings and mycorrhiza fungi can be used in controlling root-knot nematode Meloidogyne incognita on cucumber


2020 ◽  
Vol 12 (9) ◽  
pp. 245
Author(s):  
P. V. Peña Alvarenga ◽  
Y. M. Lezcano Aquino ◽  
L. Ayala Aguilera ◽  
M. J. González Vera ◽  
W. N. Ortiz ◽  
...  

The human consumption of vegetables in different parts of the world is quite high, among them tomato stands out on a larger scale and not so far, also is cucumber, both with great economic importance. Due to the problems regarding the vigor of many seeds, techniques that seek to improve the establishment of the seedlings in a uniform way have been implemented. One technique is the osmotic conditioning to which the seeds are submitted, for which compound solutions such as polyethylene glycol or potassium nitrate can be used, with which very satisfactory results are obtained under laboratory and field conditions The objective of this investigation was to evaluate the effect of different doses and osmotic solutions on the physiological quality of seeds of tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.) in laboratory and field conditions. The evaluated variables were germination percentage, germination speed index, root length and emergence of seedlings. The tomato seeds were conditioned with PEG-6000 (-0.2, -0.4, -0.6 and -0.8 Mpa) and stored for a 30 days period, and as for the cucumber seeds with PEG-6000 (-0.2 and -0.1 Mpa) and with KNO³ (100 mg and 300 mg) with a storage period of 45 days. It is concluded that, in tomato seeds, germination did not present statistical differences, however, the variables referring to vigor were favored with the conditioning in the presence of PEG-6000 with the (-0.2 Mpa) concentration, while in cucumber seeds the germination percentage was better using PEG 6000 compared to nitrate, while for vigor variables it behaved better in the presence of a concentration of (-0.2 Mpa) of PEG.


2020 ◽  
Vol 49 (3) ◽  
pp. 579-584
Author(s):  
Ifra Siddique ◽  
Ishrat Naz ◽  
Raja Asad Ali Khan ◽  
Musharaf Ahmed ◽  
Syeda Maryam Hussain

Fourteen cultivars of cucumber were screened for their resistance to the Southern root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in an in planta experiment. The pots were maintained in greenhouse with CRD for 50 days after inoculation. The cultivar DS92-05 induced significant mortality and was rated “moderately resistant (MR)”. This cultivar showed increase in plant growth parameters including vine length. The cultivars DS92-06, Laghman, Sultan and Desitype were moderately susceptible (MS). The cultivar Rehan and DS96-299 were rated susceptible (S) whereas DS97-299, Chaiya, Beitalpha, Alto, DS92-04 and Local were rated as highly susceptible (HS). DS92-05 is thus promising for sustainable agriculture, specially in those areas with high population density of Southern Root knot nematode.


2021 ◽  
Vol 2 (1) ◽  
pp. 35-40
Author(s):  
Shakti Singh Bhati ◽  
B. L. Baheti

Cucumber (Cucumis sativus L.) is a high nutritious and mineral-rich vegetable, which occupies a prominent place as a salad and vegeta-ble. It is being used in many ways in the daily diet of humans and widely cultivated worldwide. The decrease of agricultural land, ad-verse environmental conditions and continuous increase of popula-tion, the demand of nutritious food is a matter of great concern to the world. Protected cultivation is a very effective tool to solve this problem because in this cultivation the productivity of crops is very high as compared to open field conditions. High value crops suc-cessfully grown in protected cultivation, specially vegetables (cu-cumber, tomato, Capsicum etc.) which are highly susceptible to the numerous pests and pathogens, including phyto-parasitic nema-todes (specially root-knot nematode, Meloidogyne spp.). With this view, present trial was taken to estimate the avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house situated on farmer’s field with the application of phorate at 2 kg a.i. ha-1 over check. Results exhibited that application of chemical treatment significantly reduced number of galls per 5 g roots, egg masses per 5 g roots, eggs & juveniles per egg mass and final nema-tode population 79.03, 81.10, 30.91 and 56.54%, respectively. Avoidable yield losses were recorded to the tune of 66.84% on cu-cumber by M. incognita in poly-house.


Nematology ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 489-496 ◽  
Author(s):  
Gaku Murata ◽  
Tomoyuki Takai ◽  
Kenta Uesugi

Summary Commercially available sorghum cultivars were tested for resistance to Meloidogyne incognita in order to select cultivars that combine fodder production with M. incognita population management. Initially in a pot test with 12 sorghum cultivars, ‘Kyushuko 3 go’, a sorghum hybrid, supported very low M. incognita reproduction approximately 40 days after inoculation (dai) with 500 second-stage juveniles (J2) pot−1, similar to the resistant green manure ‘Tsuchitaro’. Further tests for development of M. incognita in roots (20 dai with 150 J2 (root system)−1) indicated that the resistance of ‘Kyushuko 3 go’ acts after nematode root penetration. In field tests in 2015 and 2016, ‘Kyushuko 3 go’ suppressed M. incognita population densities, although some variations in field conditions may influence reproduction of M. incognita on ‘Kyushuko 3 go’. These findings demonstrated M. incognita-resistant fodder sorghum cultivars could be a useful alternative to susceptible cultivars for root-knot nematode management.


Nematology ◽  
1999 ◽  
Vol 1 (3) ◽  
pp. 279-284 ◽  
Author(s):  
S. Alan Walters ◽  
Todd C. Wehner ◽  
Kenneth R. Barker

Abstract Ten cultigens were evaluated for resistance to Meloidogyne arenaria races 1 and 2, and M. javanica under greenhouse and field conditions. Resistance to M. arenaria races 1 and 2, and M. javanica was verified in Cucumis sativus var. hardwickii line LJ 90430 and to M. arenaria race 2 in C. sativus var. sativus Southern Pickler and Mincu in a greenhouse test. Another cultigen of C. sativus var. hardwickii (PI 215589) was found to be resistant to M. arenaria race 2 but not to other root-knot nematode species tested. LJ 90430 is the cultigen of choice to develop root-knot nematode resistant cucumbers, since it has multiple root-knot nematode resistance and is cross-compatible with cucumber. Greenhouse and field data were positively correlated (r = 0.74) over both years. Experiment repeatabilities were calculated from the cultigens infected with root-knot nematodes under both greenhouse and field conditions. Four environments (greenhouse and field over 2 years) were used in the analysis. Repeatabilities were high in all instances (ranging from 0.83-0.99) and indicated that the environment (field or greenhouse) was not an important factor in assessing root-knot nematode resistance for the cultigens evaluated. Resistenz von Gurkengegen Wurzelgallennematoden im Gewachshaus undim Freiland - Unter Gewachshausund Freilandbedingungen wurden zehn Cultigene auf ihre Resistenz gegen Meloidogyne arenaria Rassen 1 und 2 und gegen M. javanica gepruft. Bei Cucumis sativus var. hardwickii Linie LJ 90430 wurde im Gewachshausversuch Resistenz gegen M. arenaria Rassen 1 und 2 sowie gegen M. javanica nachgewiesen, und in C. sativus var. sativus "Southern Pickler" und "Mincu" Resistenz gegen M. arenaria Rasse 2. Cultigen C. sativus var. hardwickii (PI 215589) war resistent gegen M. arenaria Rasse 2 aber nicht gegen die anderen gepruften Arten von Wurzelgallennematoden. LJ 90430 ist das Cultigen der Wahl bei der Entwicklung von Gurken, die gegen Wurzelgallennematoden resistent sind, da es multiple Resistenzen gegen Wurzelgallennematoden besitzt und kreuzungsvertraglich mit Gurke ist. Die Ergebnisse der Gewachshaus- und Feldversuche waren uber beide Versuchsjahre hin positiv korreliert (r = 0,74). Ausgehend von den Cultigenen, die im Gewachshaus und im Freiland mit Wurzelgallennematoden infiziert waren, wurden die Wiederholbarkeiten der Versuche berechnet. Dabei wurden vier verschiedene Umweltbedingungen (Gewachshaus und Freiland uber zwei Jahre) verwendet. Die Wiederholbarkeiten waren in allen Fallen hoch (0,83-0,99) und zeigten an, dass die Umwelt (Freiland oder Gewachshaus) kein wichtiger Faktor bei der Bestimmung der Resistenz gegen Wurzelgallennematoden bei den gepruften Cultigenen war.


Sign in / Sign up

Export Citation Format

Share Document