Thermoplastic-Guayule Rubber Blends—Compositions and Mechanical Properties

1982 ◽  
Vol 55 (5) ◽  
pp. 1328-1340 ◽  
Author(s):  
L. F. Ramos-DeValle ◽  
R. R. Ramírez

Abstract An experimental study of the mixing and final mechanical properties of blends of guayule rubber with polyolefins was carried out. It was found that (1) variation in total mixing time during blend preparation produced only minor differences in maximum tensile properties; (2) tensile properties of the blends approach those of the plastic at GR concentrations of 50% and lower, those of the rubber at GR concentrations of 70% and higher; (3) tensile properties of partially crosslinked blends improve if the addition of DCP is effected after partial mixing of the pure homopolymers; (4) the partial cross-linking of the blend exerts a strong beneficial influence on the mechanical properties; (5) the addition of carbon black exerts little influence on the mechanical properties of the blend. It can be suggested that, at 60% GR, both polymers (GR and HDPE) show the same tendency to form the continuous or dominant phase. Above 60%, the rubber tends to be the dominant phase, and below 60% the plastic tends to be the dominant phase. The mechanical properties of partially crosslinked GR-HDPE blends are comparable with those of similar commercially available products. This suggests a further alternative in the commercialization of natural guayule rubber, namely, thermoplastic rubbers.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


2019 ◽  
Vol 138 (6) ◽  
pp. 4395-4405 ◽  
Author(s):  
Anna Dziemidkiewicz ◽  
Magdalena Maciejewska ◽  
Martyna Pingot

Abstract The aim of this work was to examine the influence of new curing agents proposed for brominated butyl rubber (BIIR) on the cross-linking process of rubber compounds and the thermal behavior of the vulcanizates. Rubber blends that were filled with carbon black and contained acetylacetonates of different transition metals in the presence of triethanolamine (TEOA) as new cross-linking agents were prepared. The performed studies showed that metal acetylacetonates (Me(acac)) are effective cross-linking agents for BIIR, which was confirmed by high values of the torque increment (∆M) and significant cross-linking degree of the vulcanizates (α(T)). The most active curing agent seems to be iron acetylacetonate (Fe(acac)). Its application results in a shorter optimal vulcanization time, lower onset vulcanization temperature and similar vulcanization enthalpy compared to the BIIR cured with a sulfur curing system. The BIIR vulcanizates cured with Me(acac) reveal good mechanical properties with tensile strengths in the range of 9–14 MPa and better damping properties comparing to the sulfur-cured rubber. The proposed curing agents do not significantly affect the thermal stability of the BIIR vulcanizates.


2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Nurul Husna Rajhan ◽  
Hanizah Ab. Hamid ◽  
Azmi Ibrahim ◽  
Rozaina Ismail

Magnetorheological elastomers (MREs) have much interest in engineering applications. However, the mechanical properties of MREs are still under ongoing researches. This paper presents the results from tensile test, hardness and rebound test that were carried out in order to understand the mechanical properties of MRE with the influence of carbon black content. The addition of carbon black was varied with the amount of 20 pphr, 40 pphr and 60 pphr of carbon black. The development of the MRE composites was manufactured by following the conventional rubber compounding process. The optimum cure of each MRE composite was determined by using a Rheometer 100. The mechanical properties through tensile test were obtained by using an Instron Tensile Machine, meanwhile hardness and resilience were carried out by using Wallace Dead Load Hardness and Dunlop Tripsometer, respectively. The results of tensile strength were not consistent with the addition of carbon black. In meantime, hardness value increases as the carbon black increases. The decreasing pattern of MRE resilience could be observed when the carbon black content increases.


2011 ◽  
Vol 13 ◽  
pp. 27-32 ◽  
Author(s):  
Zdenĕk Jonšta ◽  
Pavel Koštial ◽  
Ivan Ružiak ◽  
Peter Jonšta ◽  
J. Jurčiová ◽  
...  

In the paper we present measurements of transport physical parameters such as thermal conductivity, diffusivity and specific heat capacity and dc electrical conductivity as well as the mechanical values E*, tg δ for rubber compounds filled by different ratio of silica - carbon black fillers. From presented results it is possible to see that proper filler concentration (rubber blend - silica - carbon black) rising all thermal parameters as well as mechanical properties represented by complex Young’s modulus and so, maintains the good mechanical parameters of the blend and finally it also lowers the electrical resistance. All trends are favourable for the improvement of useful rubber blends properties.


2019 ◽  
Vol 1 (6) ◽  
pp. 503-508
Author(s):  
Tharunkumar N ◽  
Anand G

The present investigation addresses the external strengthening of reinforced concrete (RC) T-beams using jute fiber laminates. An experimental study is mainly carried out to study the change in structural behaviour of RC T-beams using externally wrapped jute fiber laminates, to enhance the shear and flexural capacity of the beams. The effect of pattern and orientation of the strengthening fabric on the shear capacity of the strengthened beams will be examined. RC T-beams with minimum shear reinforcement is designed and then external confinement using jute fiber laminates is carried out using epoxy resin. The layer confinement is executed to study and analyze the behaviour of confined beams with respect to control beam. Experimental results showing the advantage of beam strengthened using the various lay-ups of jute fiber are to be discussed. For all developed composites, experimental results revealed that the tensile properties of the developed composites are strongly dependent on the tensile strength of jute fiber and that the tensile properties of jute fiber are very much defect sensitive. Jute as a natural fiber is eco-friendly, low cost, versatile in textile fields and has moderate mechanical properties, which replaced several synthetic fibers in development of many composite materials. However, the hydrophilic nature of the jute fiber affects the mechanical properties of the developed composites. As a result to arrest crack and improve the strength of beam.


2005 ◽  
Vol 78 (1) ◽  
pp. 84-104 ◽  
Author(s):  
Kwang-Jea Kim ◽  
John VanderKooi

Abstract Moisture was treated on a silica surface and it was added into bis(triethoxysilylpropyl)disulfide (TESPD)/carbon black (CB)/S-SBR compound and mixed in an internal mixer. The effects of moisture were investigated with respect to the temperature rise during mixing, processability, cure characteristics, and mechanical properties and two-pass (2P) mixings were compared with conventional three-pass (3P) mixings. Addition of the moisture treated silica into the compound lowered the heat generation during mixing, lowered the drop temperature, decreased the scorch time, lowered the heat build up, lowered the tanδ (E″/E′), increased the Mooney viscosity, increased the torque rise (MH-ML), increased the elongation modulus, increased the blow out time, and increased the deformation%. The properties of each compound were gradually increased with the level of moisture and the 2P mixing procedure generated less heat during mixing and exhibited better mechanical properties than the 3P mixing one. The addition of water molecules improved the silane reaction with silica surface via improved hydrolysis and resulted in an increased level of cross-linking. It also seemed hydrolyzes the benzothiazolesulfenamide accelerator and resulted in a faster scorch and an increased cure rate.


2014 ◽  
Vol 627 ◽  
pp. 97-100 ◽  
Author(s):  
R. Fernandez-Martinez ◽  
R. Hernandez ◽  
J. Ibarretxe ◽  
Pello Jimbert ◽  
M. Iturrondobeitia ◽  
...  

Mastering the relationship between the final mechanical properties of carbon black reinforced rubber blends and their composition is a key advantage for an efficient design of the composition of the blend. In this work, some models to predict three relevant physical attributes of rubber blends — modulus at 100% deformation, Shore A hardness, and tensile strength — are built by machine learning methods and subsequently evaluated. Linear regression, artificial neural networks, support vector machine, and regression trees are used to generate the models. The number of used samples and the values for the input variables is determined by a Taguchi design of experiments, and prior to the modeling the uncertainty of the experimental data was analyzed.


Sign in / Sign up

Export Citation Format

Share Document