Experimental Study and Simulation of Interface Development and Penetration in Two-Component Transfer Molding of Rubber Compounds

2004 ◽  
Vol 77 (5) ◽  
pp. 873-890 ◽  
Author(s):  
C. T. Li ◽  
A. I. Isayev ◽  
R. L. Warley

Abstract Simulation and experimental studies of pressure-controlled sequential transfer molding of two SBR rubber compounds under isothermal condition have been carried out to obtain a two-layered sandwich structure. One SBR compound, intended for the skin, is first laid up in the cavity; and another SBR compound, intended for the core, is used for transfer. The SBR is subjected to pressure in order to penetrate into the skin and push the layup to fully fill the cavity. The obtained moldings have an encapsulated skin/core sandwich structure. Two material combinations with different viscosity ratios have been studied. The rheological interaction of skin/core components and its effect on the penetration behavior and interface shape have been investigated. The influence of processing conditions, such as the volume fraction transferred and pressure, is elucidated. From the experiment and simulation it is found that the penetration and the interface development are significantly affected by the rheological properties of the compounds and the volume fraction transferred. At the same time, the pressure imposed during transfer molding is found to have little effect on the interface development at a constant volume fraction transferred.

2007 ◽  
Vol 353-358 ◽  
pp. 687-690
Author(s):  
Yan Dong Yu ◽  
De Liang Yin ◽  
Bao You Zhang

Cavity growth is a typical microstructure feature in superplastic forming (SPF) of materials. Substantial growth and interlink of cavities in superplastic deformation usually lead to reduction in elongation, even to failure. Consequently, it is necessary to investigate the mechanism and model of cavity growth. In this paper, experimental studies on cavity growth were carried out by means of superplastic tension of ZK60 magnesium alloys. Scanning electronic microscope (SEM) was employed for observation of fractography. Experimental cavity radius and volume fraction were determined by optical microscopy and corresponding picture-based analysis software. It is found that, the fractured surfaces after a superplastic elongation have a mixed characteristic of intergranular cavities and dimples. Further, the cavity growth is identified to follow a exponentially increasing mode.


2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


1996 ◽  
Vol 118 (4) ◽  
pp. 214-222 ◽  
Author(s):  
T. E. Voth ◽  
T. L. Bergman

The thermomechanical response of ball-grid array assemblies during reflow soldering is considered here. Experiments are performed to investigate the thermomechanical response of a representative system and the results are used to validate a numerical model of system behavior. The conclusions drawn from the experimental studies are used to guide development of a process model capable of describing more realistic BGA soldering scenarios. Process model predictions illustrate the system’s thermomechanical response to thermal and mechanical processing conditions, as well as component properties. High thermal conductivity assemblies show the greatest sensitivity to mechanical loading conditions.


2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


2010 ◽  
Vol 83 (1) ◽  
pp. 97-122 ◽  
Author(s):  
Xiao-Dong Pan ◽  
Paul Zakelj ◽  
Cara Adams ◽  
Akiko Neil ◽  
Greg Chaplin

Abstract The British pendulum skid tester (BPST) has been widely adopted for laboratory characterization of wet skid resistance (WSR) for rubber compounds. However, testing results are not yet well explained with material properties. For filled compounds made of the same styrene-butadiene rubber, on a Portland cement concrete surface wetted with water, WSR for compounds filled with inorganic oxides is higher than WSR for compounds filled with carbon black at the same filler volume fraction. However, such difference in WSR is eliminated under ethanol lubrication. Difference in WSR remains under ethanol lubrication between compounds filled with a reinforcing filler and compounds filled with a nonreinforcing filler. Accepting that dynamic deformation of rubber occurs in the frequency range between 103 and 106 Hz during testing with the BPST, loss tangent for the compounds is measured at various low temperatures but fails to correlate with WSR detected under water lubrication. Modification of bulk viscoelasticity from ethanol absorption should not be neglected for consideration of WSR under ethanol lubrication. During testing with the BPST, sliding noise generated by the assemblage of the spring and lever system in the pendulum with a rubber slider attached is captured under varied lubrication conditions. Both viscoelastic properties of rubber compounds and lubrication condition significantly affect sliding noise. However, no strict correlation between the intensity of sliding noise and WSR is observed. From frequency domain analysis, major components of the sliding noise lie in the frequency range between 500 and 5000 Hz for most compounds. For better understanding on testing with the BPST, modes of material deformation during dynamic sliding on a wet rough surface need to be further scrutinized.


2015 ◽  
Vol 75 (11) ◽  
Author(s):  
A.N. Afifah ◽  
S. Syahrullail ◽  
C.S. Nor Azwadi

As suspending nanoparticles in fluid-based give tremendous promise in heat transfer application, an understanding on the mechanism of heat transfer is indispensable. The present study dealt with natural convection of nanofluid inside a square cavity heated at the bottom, while the upper part was exposed to the atmosphere. Experimental studies have been performed for various physical conditions, such as volume fractions of nanoparticles varying from 0% to 2.0%, different dispersion techniques of nanoparticles in fluid-based, and heating time from 0 to 35 minutes. In general, dynamic viscosity of nanofluid clearly increased with volume fraction, but decreased with the increasing temperature. It was found that improper dispersion technique resulted in viscous solution. On top of that, transport mechanism of thermophoresis and Brownian diffusion were considered in analysing heat transfer across the cavity.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Matthew B. L. Bennison ◽  
A. Keith Pilkey ◽  
W. Brent Lievers

Abstract Cancellous bone is an anisotropic structure with architectural and mechanical properties that vary due to both skeletal site and disease state. This anisotropy means that, in order to accurately and consistently measure the mechanical properties of cancellous bone, experiments should be performed along the primary mechanical axis (PMA), that is, the orientation in which the mechanical properties are at their maximum value. Unfortunately, some degree of misalignment will always be present, and the magnitude of the resulting error is expected to be architecture dependent. The goal of this work is to quantify the dependence of the misalignment error, expressed in terms of change in apparent elastic modulus (ΔE), on both the bone volume fraction (BV/TV) and the degree of anisotropy (DA). Finite element method (FEM) models of bovine cancellous bone from five different skeletal sites were created at 5 deg and 20 deg from the PMA determined for each region. An additional set of models was created using image dilation/erosion steps in order to control for BV/TV and better isolate the effect of DA. Misalignment error was found to increase with increasing DA and decreasing BV/TV. At 5 deg misaligned from the PMA, error is relatively low (<5%) in all cases but increases to 8–24% error at 20 deg. These results suggest that great care is needed to avoid introducing misalignment error into experimental studies, particularly when studying regions with high anisotropy and/or low bone volume fraction, such as vertebral or osteoporotic bone.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 437-443 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Moo Sun Kim ◽  
Bum Soo Kim ◽  
Dong Jun Kwon ◽  
Sung Woong Choi

AbstractDicyclopentadiene (DCPD) resin has gained popularity owing to its fast curing time and ease of processing with a low viscosity in the monomer state. In the present study, the impact and shear properties of a carbon fiber (CF)/p-DCPD composite were investigated. The CF/p-DCPD composite was manufactured by vacuum-assisted resin transfer molding with CF as the reinforcement and p-DCPD as the resin with a maximum fiber volume fraction of 55 weight percent. Impact and shear properties of the CF/p-DCPD composite were evaluated and compared with those of a CF/Epoxy composite. The maximum shear stress and modulus of the CF/p-DCPD composite were lower than that of the CF/Epoxy composite. However, the CF/p-DCPD composite had higher toughness than that of the CF/Epoxy composite; this indicates that it is tougher and exhibits a more ductile load-displacement response with a lower modulus and larger failure deformation. The impact strength of the CF/p-DCPD composite was about three time that of the CF/Epoxy composite. The higher impact strength of the CF/p-DCPD composite is attributed to the resin characteristics: epoxy resin has a more brittle behavior, and hence, higher energy is required for crack propagation due to fracture.


2020 ◽  
pp. 096739112096845
Author(s):  
Ana Carolina Mendes Quintanilha Silva Santos ◽  
Francisco Maciel Monticeli ◽  
Heitor Ornaghi ◽  
Luis Felipe de Paula Santos ◽  
Maria Odila Hilário Cioffi

This work has been developed for a comparative purpose concerning the processing and respective mechanical performance of CFRP composites processed by resin transfer molding (RTM) and compression molding (CM) techniques. Thermal and viscosimetric tests before processing certified the optimal parameter procedure. Both composites were submitted to short-beam shear tests and through microscopy to determine failure mechanisms. CM specimens presented a decrease of 27% in shear strength caused by the presence of macro porosity that induced crack initiation and connection of different delamination plies, causing the speeding up of crack propagation and jump of the interlaminar layer. The low capillary effect and higher viscous force were responsible for macro porosity, inducing heterogeneous impregnation in CM and to the direction reduce in mechanical behavior. On the other hand, more homogeneous impregnation in RTM specimens was responsible for the absence of macro porosity, ensuring higher values of shear strength and lower void volume fraction.


Sign in / Sign up

Export Citation Format

Share Document