scholarly journals Evaluation of antioxidant and anticancer effects of Lavandula angustifolia and Melissa officinalis on HeLa, OVCAR-3 and MCF-7 cancer cell lines

2021 ◽  
Vol 8 (1) ◽  
pp. 20-30
Author(s):  
Parichehr Hanachi ◽  
Hojat Sadeghi Ali Abadi ◽  
Nasim Ghorbani ◽  
Roshanak Zarringhalami ◽  
Khadijeh Kiarostami ◽  
...  
2017 ◽  
Vol 7 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Haris Niksic ◽  
Elvira Kovac-Besovic ◽  
Elma Omeragic ◽  
Samija Muratovic ◽  
Jasna Kusturica ◽  
...  

Introduction: We studied the chemical composition and antimicrobial, antioxidant, and antiproliferative activities of essential oils from flowers of Lavandula angustifolia grown in Southern Bosnia and Herzegovina. Methods: The chemical profile of essential oil was evaluated by means of gas chromatography-mass spectrometry. Antimicrobial activity was tested against six bacterial strains. The antioxidant activity by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test and the antiproliferative activity against three human cancer cell lines, MCF-7, NCI-H460, and MOLT-4, were investigated using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide tests. Results: In L. angustifolia essential oil, monoterpene alcohols were the most represented class of volatiles (51.8%), including linalool, lavandulol, and terpinen-4-ol, α-terpineol as the major components, followed by monoterpene esters (22.6%). The most important antibacterial activity of essential oil was expressed on Gram-negative strains. Investigated essential oil was able to reduce DPPH radicals into the neutral DPPH-H form (inhibitory concentration 50% [IC50] = 0.421 mg/ml), and this activity was dose dependent. The essential oil showed significant antiproliferative activity against three cancer cell lines, MOLT-4, MCF-7, and NCI-H460 cells, with IC50 values of 17, 94, and 97 µg/ml, respectively. The result of the antiproliferative assay indicates that MOLT-4 cell line was the most sensitive to investigated essential oil. Conclusion: The results revealed that L. angustifolia essential oil may be important growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent antiproliferative activity against MOLT-4 cells.


2020 ◽  
Author(s):  
Monireh Mohammadpanah ◽  
Elham Mojodi ◽  
Fatemeh Haghiralsadat ◽  
Seyed Kazem Sabbagh ◽  
Mahya Rajabi

Abstract Cancer drug delivery has recently focused on using novel carrier systems due to their high drug-loading capacity, release rate properties, and minimum side effects. Finding novel chemotherapeutic agents would be essential for the improvement of integrated treatment planning. In this study, the effect of constructed nano-liposomal particles of Lavandula angustifolia essential oil (LAEO) was evaluated on cell toxicity and the expression of HER-2 and Caspase-3 genes in two MCF-7 and SK-BR-3 cell lines. Our results showed a high entrapment efficiency (50 ± 3.34), and a low average size (68.3 ± 7.28 nm) of nano-liposomes under suitable conditions. The surface charge of particles was at a range of -2 to -4.5 mV. The release rate of nanoparticles was estimated to be 63.98% (37 °C; pH = 7) and 87.63% (42 °C; pH = 5) in MCF-7 and SK-BR-3 cell lines after 48 hours, respectively. The stability of nanoparticles without a great increase in particle sizes and spherical shape was observed using force atomic microscopy. The degree of cell growth in response to nanoliposomal LAEO was significantly decreased in comparison with free essential oil (p-value < 0.01) when assayed on both cell lines. The analysis of gene expression showed that the treatment of cancer cell lines with nanoliposomal LAEO significantly elevated the relative expression of the caspase-3 gene while reducing the expression of HER-2 (P < 0.05). Based on the obtained results, it seems that LAEO in the form of nanoparticles could have more efficiency on the growth inhibition of cancer cell lines in comparison with the free form of the essential oil. Further studies are required to assess the in vivo effects of LAEO nanoliposomes with refined formulations against various types of cancer (Fig. 1).


2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


2020 ◽  
Vol 16 ◽  
Author(s):  
Tran Khac Vu ◽  
Nguyen Thi Thanh ◽  
Nguyen Van Minh ◽  
Nguyen Huong Linh ◽  
Nguyen Thi Phương Thao ◽  
...  

Background: Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. Aims: This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. Method: A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin-4(3H)- ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structure-activity. relationships. Results: It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 µM, and HDAC inhibition with IC50 value of 6.36 µM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. Conclusion: The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3041
Author(s):  
Xiaohan Hu ◽  
Sheng Tang ◽  
Feiyi Yang ◽  
Pengwu Zheng ◽  
Shan Xu ◽  
...  

Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure–activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.


2000 ◽  
Vol 2 (S1) ◽  
Author(s):  
CJ Pogson ◽  
CMW Chan ◽  
L-A Martin ◽  
GPH Gui ◽  
M Dowsett

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zahra Tayarani-Najaran ◽  
Seyed Ahmad Emami ◽  
Javad Asili ◽  
Alireza Mirzaei ◽  
Seyed Hadi Mousavi

TheScutellariaspecies (Lamiaceae) is used as a source of flavonoids to treat a variety of diseases in traditional medicine. In spite of many reports about the cytotoxic and antitumor effects of some species of this genus, anticancer researches on one of the Iranian speciesS. litwinowiihave not yet been conducted.The cytotoxic properties of total methanol extract ofS. litwinowiiand its fractions were investigated on different cancer cell lines including AGS, HeLa, MCF-7, PC12 and NIH 3T3. Meanwhile, the role of apoptosis in this toxicity was explored. The cells were cultured in DMEM medium and incubated with different concentrations of herb plant extracts. Cell viability was quantitated by MTT assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak).Scutellaria litwinowiiinhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions ofS. litwinowii, the methylene chloride fraction was found to be more toxic compared to other fractions. The IC50values of this fraction against AGS, HeLa, MCF-7 and PC12 cell lines after 24 h were determined, 121.2 ± 3.1, 40.9 ± 2.5, 115.9 ± 3.5 and 64.5 ± 3.4μg/ml, respectively.Scutellaria litwinowiiinduced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that apoptotic cell death is involved inS. litwinowiitoxicity.Scutellaria litwinowiiexerts cytotoxic and proapototic effects in a variety of malignant cell lines and could be considered as a potential chemotherapeutic agent in cancer treatment.


Author(s):  
Muhammad Luqman Nordin ◽  
Arifah Abdul Kadir ◽  
Zainul Amiruddin Zakaria ◽  
Rasedee Abdullah ◽  
Muhammad Nazrul Hakim Abdullah

Sign in / Sign up

Export Citation Format

Share Document