scholarly journals SKELETAL MUSCLE POSTTRAUMATIC REGENERATION RESPONSE TO HUMIC PELOID MEDICATION

2019 ◽  
Vol 16 (32) ◽  
pp. 96-107
Author(s):  
Galina N SUVOROVA ◽  
Natalia N VOLOGDINA ◽  
Nadezhda P AVVAKUMOV ◽  
Maria Y KRIVOPALOVA

One of the relevant tasks of current morphology is the investigation of tissue regenerative potential and research for new medications that improve recovery process efficiency. Nowadays, clinical specialists focus on medications that are based on natural compounds. However, such medication influence on the processes that occur within the injured tissues is still not identified. The purpose of this study was to investigate skeletal muscle tissue posttraumatic regeneration response to humic peloid medication, based on humic acids modified by Zinc ions. Humic acid extraction was carried out by means of patent procedure. The study included laboratory Wistar rats with hyperextension of front femur muscle. The preparations were studied by means of light and electronic microscopy and autoradiography. Histologic preparations evaluation showed that under peloid medication exposure the apolexis processes within muscle fibers rupture are inhibited, interstitial edema becomes restricted by the injured area, vessel growth into the area of damaged capillaries is stimulated, macrophages migrate and the area and duration of posttraumatic inflammation decrease. Additionally, peloid medication intake shortens the length of skeletal muscle tissue reparative histogenesis stages: myosatellitocytes are activated earlier than in the control group, myoblasts and myosymplasts are detected, the separation of nuclear sarcoplasmatic areas from partly injured muscle fibers is stimulated, myotubules appear 3 – 5 days earlier than in control group. Overall, muscle tissue regeneration efficiency increases by 21%. Obtained results allow us to conclude that peloid medication based on humic acids modified by Zinc ions positively influence the stimulation of the regeneration process. This will lead to further investigation of humic substances: fulvic, hymatomelanic, humin and humic acids of peloids as medications and their implementation in clinical practice.

2017 ◽  
Vol 22 (2) ◽  
pp. 131
Author(s):  
Devyani Diah Wulansari ◽  
Achmad Basori ◽  
Suhartati Suhartati

Ethnobotany surveys show that papaya seeds are widely used as herbs for the management of some diseases such as abdominal discomfort, pain, malaria, diabetes, obesity, and infection. This research was conducted to analyze the effect of papaya seed extract on GLUT4 expression on skeletal muscle tissue of DM type II model induced by high fructose diet. This study used 24 animals, divided into 4 groups of negative control group, treated with papaya seed extract 100 mg / kgBB, 200 mg / kgBW and 300 mg / kgBW, was adapted for 14 days then induced by fructose solution 20% Orally with a dose of 1.86 grams / kgBB for 56 days. The treatment group was given papaya seed extract in accordance with the dose of each group for 14 days. GDP levels was measured using a spectrophotometer. Skeletal muscle tissue is used on the gastrocnemius part. GLUT4 expression was measured through a Immunoreactive Score (IRS) method with immunohistochemical staining using GLUT4 polyclonal antibodies. Comparative test results showed that there were significant differences between groups (p <0.05) in final GDP variables and GLUT4 expression. Pearson correlation test results show that the value p = 0.001, meaning there is a significant relationship between GLUT4 expression with final GDP levels. The result of simple linear regression analysis showed that p = 0,000 (<0,05), meaning that dose of papaya seed extract had a significant influence on GLUT4 expression.


2012 ◽  
Vol 302 (3) ◽  
pp. E365-E373 ◽  
Author(s):  
Richard A. M. Jonkers ◽  
Marlou L. Dirks ◽  
Christine I. H. C. Nabuurs ◽  
Henk M. De Feyter ◽  
Stephan F. E. Praet ◽  
...  

Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using1H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls ( P < 0.05), but IMCL content and whole body insulin sensitivity did not differ between groups. In muscle fibers taken from controls, both SDH activity and IMCL content were higher in the subsarcolemmal region than in the intermyofibrillar area. This typical subcellular SDH and IMCL distribution pattern was lost in muscle fibers collected from subjects with paraplegia and had changed toward a more uniform distribution. In conclusion, the lower metabolic demand in deconditioned muscle of subjects with paraplegia results in a significant decline in muscle fiber oxidative capacity and is accompanied by changes in the subcellular distribution patterns of SDH activity and IMCL. However, loss of muscle activity due to paraplegia is not associated with substantial lipid accumulation in skeletal muscle tissue.


2021 ◽  
Author(s):  
Ivan M Basurto ◽  
Mark T Mora ◽  
Gregg M Gardner ◽  
George Christ ◽  
Steven R Caliari

Skeletal muscle is characterized by its three-dimensional (3D) anisotropic architecture composed of highly aligned and electrically-excitable muscle fibers that enable normal movement. Biomaterial-based tissue engineering approaches to repair skeletal muscle...


Author(s):  
T. Ayele ◽  
A.B.Z. Zuki ◽  
M.M. Noordin ◽  
B.M.A. Noorjahan

A novel tissue engineered construct was used to engineer skeletal muscle tissue for reconstruction of abdominal wall defects, which is a common challenge to surgeons, due to insufficient autogenous tissue. Myoblasts were isolated from soleus muscle fibers, seeded onto the scaffold and cultivated in vitro for 5 days. Full-thickness abdominal wall defects (3 x 4 cm) were created in 18 male New Zealand white rabbits and randomly divided into two equal groups (n=9 each). The defects of the first group were repaired with myoblast seeded bovine pericardium (treatment group) whereas the second group involved non-seeded bovine pericardium (control group). Three animals were sacrificed at 7, 14, and 30 days post-implantation from each group and the explanted specimens were subjected to macroscopic, light, fluorescence and electron microscopic analysis. In each case, the tissue engineered construct was thicker from deposition of newly formed collagen with neo-vascularisation, than the control group. Most importantly, multinucleated myotubes and myofibers were only detected in the treatment group. Therefore, this study demonstrates that myoblast-seeded bovine pericardium construct can provide a structural replacement for severe and large abdominal wall defects with profound regeneration of skeletal muscle tissues.


2018 ◽  
Vol 125 (2) ◽  
pp. 536-544 ◽  
Author(s):  
Ida Torp Andersen ◽  
Adrian Harrison ◽  
Rikke Broholm ◽  
Anja Harder ◽  
Jens Bo Nielsen ◽  
...  

Muscle contractures are a common complication in patients with central nervous system (CNS) lesions which limit range of movement and cause joint deformities. Furthermore, it has previously been shown that muscles with contractures have a reduced number of capillaries, indicating decreased tissue vascularization. The aim of the present study was to investigate the microvascular volume (MV) at rest and after acute exercise in the muscle tissue of individuals with cerebral palsy (CP) and healthy control individuals. Contrast-enhanced ultrasound (CEUS) was used before and after 30 min of walking or running on a treadmill in 10 healthy control participants and 10 individuals with CP to detect MV of their skeletal muscle tissue. A significant increase in the MV was observed after exercise both in the adult CP group (21–53 yr) and in the control group (21–52 yr) (1.8 ± 0.8 ΔdB to 3.1 ± 0.9 ΔdB or 42.9% and 1.5 ± 0.6 ΔdB to 2.5 ± 0.9 ΔdB or 39.0%, respectively). Furthermore, a difference in the resting MV was observed between the most severe cases of CP [gross motor function classification scale (GMFCS) 3 and 4] (2.3 ± 0.5 ΔdB) and the less severe cases (GMFCS 1 and 2) (1.5 ± 0.2 ΔdB). When the CP group was walking (3.4 km/h), the lactate levels, Borg score, and heart rate matched the level of controls when they were running (9.8 km/h). In conclusion, individuals with CP become exhausted at much lower exercise intensities than healthy individuals. This is not explained by impaired microvascularization, since the MV of the individuals with CP respond normally to increased O2 demand during acute exercise. NEW & NOTEWORTHY Cerebral palsy (CP) patients were less physically active compared with typically developed individuals. This may affect the microvascularization. We observed that the CP group became exhausted at much lower exercise intensities compared with healthy individuals. However, impaired microvascularization was not the reason for the decreased physical activity as the CP group responded normally to increased O2 demand during acute exercise. These results indicate that walking may be recommended as an intervention to train and maintain skeletal muscle tissue in individuals with CP.


Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


2010 ◽  
Vol 43 (3) ◽  
pp. 570-575 ◽  
Author(s):  
Bastiaan J. van Nierop ◽  
Anke Stekelenburg ◽  
Sandra Loerakker ◽  
Cees W. Oomens ◽  
Dan Bader ◽  
...  

2015 ◽  
Vol 118 (5) ◽  
pp. 613-623 ◽  
Author(s):  
Irina V. Ogneva ◽  
V. Gnyubkin ◽  
N. Laroche ◽  
M. V. Maximova ◽  
I. M. Larina ◽  
...  

Altered external mechanical loading during spaceflights causes negative effects on muscular and cardiovascular systems. The aim of the study was estimation of the cortical cytoskeleton statement of the skeletal muscle cells and cardiomyocytes. The state of the cortical cytoskeleton in C57BL6J mice soleus, tibialis anterior muscle fibers, and left ventricle cardiomyocytes was investigated after 30-day 2- g centrifugation (“2- g” group) and within 12 h after its completion (“2- g + 12-h” group). We used atomic force microscopy for estimating cell's transverse stiffness, Western blotting for measuring protein content, and RT-PCR for estimating their expression level. The transverse stiffness significantly decreased in cardiomyocytes (by 16%) and increased in skeletal muscles fibers (by 35% for soleus and by 29% for tibialis anterior muscle fibers) in animals of the 2-g group (compared with the control group). For cardiomyocytes, we found that, in the 2- g + 12-h group, α-actinin-1 content decreased in the membranous fraction (by 27%) and increased in cytoplasmic fraction (by 28%) of proteins (compared with the levels in the 2- g group). But for skeletal muscle fibers, similar changes were noted for α-actinin-4, but not for α-actinin-1. In conclusion, we showed that the different isoforms of α-actinins dissociate from cortical cytoskeleton under increased/decreased of mechanical load.


Sign in / Sign up

Export Citation Format

Share Document