scholarly journals New insulation fiberboards from sunflower cake with improved thermal and mechanical properties

2015 ◽  
Vol 3 (2) ◽  
pp. 194 ◽  
Author(s):  
Philippe EVON ◽  
Justine Vinet ◽  
Matthieu Rigal ◽  
Laurent Labonne ◽  
Virginie Vandenbossche ◽  
...  

New thermal insulation fiberboards were manufactured by compression molding from a cake generated during the sunflower biorefinery. Fiberboards were cohesive mixtures of a natural binder and lignocellulosic fibers from sunflower cake. The natural binder ensured the board cohesion, and fibers acted as reinforcing fillers. The influence of molding conditions, i.e. binder type and binder content, on board density, mechanical and heat insulation properties was examined. The medium-density board containing 20% starch-based binder was a good compromise between mechanical and heat insulation properties (78 mW/m K thermal conductivity). It could be positioned on walls and ceilings for thermal insulation of buildings.

2021 ◽  
Vol 40 (1) ◽  
pp. 151-170
Author(s):  
Weijing Yao ◽  
Happiness Lyimo ◽  
Jianyong Pang

Abstract To study the active heat insulation roadways of high-temperature mines considering thermal insulation and injection, a high-temperature −965 m return air roadway of Zhujidong Coal Mine (Anhui Province, China) is selected as a prototype. The ANSYS numerical simulation method is used for the sensitivity analysis of heat insulation grouting layers with different thermal conductivities and zone ranges and heat insulation spray layers with different thermal conductivities and thicknesses; thus, their effects on the heat-adjusting zone radius, surrounding rock temperature field, and wall temperature are studied. The results show that the tunneling head temperature of the Zhujidong Mine is >27°C all year round, consequently causing serious heat damage. The heat insulation circle formed by thermal insulation spraying and grouting can effectively alleviate the disturbance of roadway airflow to the surrounding rock temperature field, thereby significantly reducing the heat-adjusting zone radius and wall temperature. The decrease in the thermal conductivities of the grouting and spray layers, expansion of the grouting layer zone, and increase in the spray layer thickness help effectively reduce the heat-adjusting zone radius and wall temperature. This trend decreases significantly with the ventilation time. A sensitivity analysis shows that the use of spraying and grouting materials of low thermal conductivity for thermal insulation is a primary factor in determining the temperature field distribution, while the range of the grouting layer zone and the spray layer thickness are secondary factors. The influence of the increased surrounding rock radial depth and ventilation time is negligible. Thus, the application of thermal insulation spraying and grouting is essential for the thermal environment control of mine roadways. Furthermore, the research and development of new spraying and grouting materials with good thermal insulation capabilities should be considered.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hengrong Du ◽  
Qinfeng Li ◽  
Changyou Wang

Abstract In this paper, we will consider an optimal shape problem of heat insulation introduced by [D. Bucur, G. Buttazzo and C. Nitsch, Two optimization problems in thermal insulation, Notices Amer. Math. Soc. 64 (2017), 8, 830–835]. We will establish the existence of optimal shapes in the class of 𝑀-uniform domains. We will also show that balls are stable solutions of the optimal heat insulation problem.


2018 ◽  
Vol 245 ◽  
pp. 06002 ◽  
Author(s):  
Jurgis Zemitis ◽  
Maxim Terekh

In the work, methods of an estimation of economic efficiency of additional heat insulation of building enclosing structures and definition of an optimum thermal resistance are considered, deficiencies of the given techniques are marked. A model is proposed for determining the optimal level of heat protection in the new economic conditions.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 355
Author(s):  
Chuanbin Hou ◽  
Song Xin ◽  
Long Zhang ◽  
Shangxiao Liu ◽  
Xiao Zhang

The known cooling methods for the high-temperature operating environment of a mine mainly include ventilation, refrigeration, heat insulation, and individual protection. Among them, the superior performance and wide application of the heat insulation materials have attracted the attention of the coal mining industry. In this paper, three types of mineral insulation materials were prepared using basalt fiber, glass fiber, vitrified microbeads in combination with cement, sand, high-strength ceramsite, water, etc. In addition, the thermal conductivity and compressive strength of the prepared specimens were assessed. The results show that the test specimen containing basalt fiber had a great thermal insulation effect and achieved the required compressive strength. Furthermore, according to the COMSOL simulation results, the test specimen containing basalt fiber had a better thermal insulation effect than the ordinary concrete materials. Therefore, the research results of this article have guiding significance to search for new mine thermal insulation materials.


2011 ◽  
Vol 239-242 ◽  
pp. 1771-1774 ◽  
Author(s):  
Meng Qiu Jia ◽  
Yu Hong Jin

Reflective topcoat and thermal insulation mid-coat composite coatings system was used in this work. The effect of the content of the hollow glass micro-beads and rutile titanium dioxide on the heat insulation performance and the reflectivity of the coatings were investigated, respectively. The heat insulation performance and the reflectivity of the thermal insulation reflective composite coatings (TIRCCs) were characterized by self-prepared experimental device. The results showed the good heat insulation property, and the insulated temperature reached 12-15°C, and the reflectivity was up to 95%. The anti-corrosion and anti-penetration of the TIRCCs were studied by electrochemical impedance spectroscopy (EIS) technique. The results showed that the resistance of the TIRCCs still be maintained at 108Ω·cm2 after 30 days in the 3.5% aqueous solution of sodium chloride. So The TIRCCs can be used on the surface of the steal structure for decreasing the temperature and enhancing anti-corrosion properties.


2011 ◽  
Vol 391-392 ◽  
pp. 859-863
Author(s):  
Zhi Xiang Huang ◽  
Xiang Yu Zhang ◽  
Xiao Yun Liu ◽  
Qi Xin Zhuang

In this paper, a kind of nano ATO heat-insulation glass coating was prepared by using silicone emulsion and nano tin dioxide (ATO) powder with ethanol as solvent. The properties of glass coating, such as transmittance, as well as thermal and mechanical properties, and the optimization of the ATO level were discussed. The results showed that this glass coating had good transmittance of visible light and good heat-insulation performance. The transmittance of visible light was above 75% and the highest temperature difference between the heat insulating and ordinary glass is 17°C. It had good energy-saving effect and could be widely used as architecture glass and automobile glass coating.


2011 ◽  
Vol 261-263 ◽  
pp. 783-787 ◽  
Author(s):  
Soon Ching Ng ◽  
Kaw Sai Low ◽  
Ngee Heng Tioh

Roof and wall are known to be responsible for heat entering into a building and should therefore be thermally insulated in order to lessen energy consumption required for air-conditioning. In this study, four soil-based aerated lightweight concrete (ALC) panels each measures 750 mm (length) x 750 mm (breadth) x 70 mm (thick) with different aerial intensity of newspaper membrane encased were produced and tested on their thermal insulation property. For environmental friendly and economy reasons, clayey soil was used in place of sand to produce the ALC panels and they were tested in the Thermal Laboratory for twenty hours. Temperature gradient was computed based on the surface temperature measured during the test. The results obtained indicated that newspaper membrane encased soil-based ALC panels have superior heat insulation performance compared to control panel in terms of temperature gradient. It is found that the temperature gradient increased from 1.92 °C/cm to 2.08 °C/cm or 8.3% higher than control panel with just merely 0.05 g/cm2 of newspaper membrane encased.


2020 ◽  
Vol 27 (4) ◽  
pp. 8-12
Author(s):  
montajb Al-khodary ◽  
sabah AL-sibai ◽  
moaffaq Tellawi

n this research we tried to improve the thermal insulation efficiency of polystyrene foam by adding some natural materials. The gebrile soil was selected for several reasons, including abundance and ease of processing before the addition - There are many previous researches for soil treatment -. We have found at ratio 20%(The proportion of the soil in the compound) the coefficient of conduction is low and then rises after this percentage As for the absorption of water it increases by increasing the soil, but at this ratio the absorption is within the permissible limit according to the specifications required for the insulation materials and also compressive strength increase with the increasing of the soil ratio because of increasing of mechanical links between the polycarbonate and polystyrene particles and composite-material’s density increasing in general.


Cerâmica ◽  
2015 ◽  
Vol 61 (359) ◽  
pp. 367-373 ◽  
Author(s):  
A. C. P. Galvão ◽  
A. C. M. Farias ◽  
J. U. L. Mendes

AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste). The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP) lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD), SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC) and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.


Sign in / Sign up

Export Citation Format

Share Document