scholarly journals Effect of low-frequency tapping systems (d5; d6) on latex yield, labor productivity and latex physiological parameters on RRIV 106 clone

2020 ◽  
Vol 19 (05) ◽  
pp. 20-26
Author(s):  
Hai V. Truong

The tapping labor shortage has been identified as a major issue for natural rubber companies in Vietnam. This study aimed to determine a suitable tapping system to adapt to the labor shortage. The experiment was conducted on RRIV 106 clone at Dong Phu rubber company, Binh Phuoc province, Vietnam in two the tapping years 2018 and 2019. The results showed that the treatments of low-frequency tapping systems (d5, d6) increased individual yield per tree per tapping (g/t/t) compared with that of d4. The g/t/t of treatments d5 and d6 with latex stimulant (ET 2.5%) applied by 6 to 10 times per year (d5, ET.6/y; d5, ET.8/y; d6, ET.8/y; d6, ET.10/y) was 23; 27; 45 and 47% higher than that of the control (d4, ET.4/y), respectively. Labor productivity (kg/task/day) of low-frequency tapping systems increased similarly to g/t/t. The tapper requirements of low tapping frequency (d5 and d6) were 20% and 33% lower than that of d4, respectively. Land productivity per year (kg/ha/year) of low-frequency tapping systems (d5 and d6) was equivalent (98 to 101%) as compared with that of the control. The effects of tapping systems on latex physiological parameters, tapping panel dryness rate (TPD), and dry rubber content (DRC, %) were not significantly different.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1703
Author(s):  
Michael Coja ◽  
Leif Kari

A waveguide model for a pre-compressed cylindrical natural rubber vibration isolator is developed within a wide frequency range—20 to 2000 Hz—and for a wide pre-compression domain—from vanishing to the maximum in service, that is 20%. The problems of simultaneously modeling the pre-compression and frequency dependence are solved by applying a transformation of the pre-compressed isolator into a globally equivalent linearized, homogeneous, and isotropic form, thereby reducing the original, mathematically arduous, and complex problem into a vastly simpler assignment while using a straightforward waveguide approach to satisfy the boundary conditions by mode-matching. A fractional standard linear solid is applied as the visco-elastic natural rubber model while using a Mittag–Leffler function as the stress relaxation function. The dynamic stiffness is found to depend strongly on the frequency and pre-compression. The former is resulting in resonance phenomena such as peaks and troughs, while the latter exhibits a low-frequency magnitude stiffness increase in addition to peak and trough shifts with increased pre-compressions. Good agreement with nonlinear finite element results is obtained for the considered frequency and pre-compression range in contrast to the results of standard waveguide approaches.


2021 ◽  
Author(s):  
Ying Chen ◽  
Dong Yiyang ◽  
Xiang Ma ◽  
Jiaru Li ◽  
Minmin Guo ◽  
...  

Abstract Background: Taraxacum kok-saghyz (TKS), a plant native to the Tianshan valley on the border between China and Kazakhstan and inherently rich in natural rubber, inulin and other bioactive ingredients, is an important industrial crop. TKS rubber is a good substitute for natural rubber. TKS's breeding work necessitates the need to screen high-yielding varieties, hence rapid determination of rubber content is essential for the screening. Conventional analytical methods cannot meet actual needs in terms of real-time testing and economic cost. Near-infrared spectroscopy analysis technology, which has developed rapidly in the field of industrial process analysis in recent years, is a green detection technology with obvious merits of fast measurement speed, low cost and no sample loss. This research aims to develop a portable non-destructive near-infrared spectroscopic detection scheme to evaluate the content of natural rubber in TKS fresh roots. Pyrolysis gas chromatography (PyGC), was chosen as the reference method for the development of NIR prediction model. Results: 208 TKS fresh root samples were collected from the Inner Mongolia Autonomous Region of China. Near-infrared spectra were acquired for all samples. Randomly two-thirds of them were selected as the calibration set, the remaining one-third as the verification set, and the partial least squares method was successfully used to establish a good NIR prediction model at 1080-1800nm with a performance to deviation ratio (RPD) of 5.54 and coefficient of determination (R2) of 0.95. Conclusions: This study showed that portable near-infrared spectroscopy could be used with ease for large-scale screening of TKS plants in farmland, and could greatly facilitate TKS germplasm preservation, high-yield cultivation, environment-friendly, high-efficiency and low-cost rubber extraction, and comprehensive advancement of the dandelion rubber industry thereof.


2017 ◽  
Vol 90 (4) ◽  
pp. 651-666 ◽  
Author(s):  
C. Hayichelaeh ◽  
L. A. E. M. Reuvekamp ◽  
W. K. Dierkes ◽  
A. Blume ◽  
J. W. M. Noordermeer ◽  
...  

ABSTRACT Diphenyl guanidine (DPG) is the most commonly used secondary accelerator in silica-reinforced rubber compounds because of its additional positive effect on the silanization reaction and deactivation of free silanol groups that are left over after the silanization. However, because of health and safety concerns about the use of DPG, which decomposes to give highly toxic aniline during high processing temperature, safe alternatives are required. This work investigates the effect of various types of aliphatic amines having alkyl or cyclic structures and similar pKa (i.e., hexylamine [HEX], decylamine [DEC], octadecylamine [OCT], cyclohexylamine [CYC], dicyclohexylamine [DIC], and quinuclidine [QUI]) on the properties of silica-reinforced natural rubber (NR) compounds by taking the ones with DPG and without amine as references. When compared with the compound without amine, the use of all amine types reduces filler–filler interaction (i.e., the Payne effect) and enhances filler–rubber interaction, as indicated by bound rubber content and decreased heat capacity increment. The amines with alkyl chains can reduce the Payne effect and enhance cure rate to a greater extent compared with the amines with cyclic rings as a result of better accessibility toward the silica surface and a shielding effect because of less steric hindrance. The longer carbon tails on linear aliphatic amines ranging from HEX, DEC, to OCT lead to a lower Payne effect, lower heat capacity increment, higher bound rubber content, and higher modulus as well as tensile strength. Overall, the use of OCT provides silica-reinforced NR compounds with properties closest to the reference one with DPG and can act as a potential alternative for DPG.


2002 ◽  
Vol 75 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Mariselma Ferreira ◽  
Rogério M. B. Moreno ◽  
Paulo S. Gonçalves ◽  
Luiz H. C. Mattoso

Abstract The latex and natural rubber from rubber trees [Hevea brasiliensis (Willd. exAdr. de Juss.) Muell. Arg.] from clones (RRIM 600, IAN 873, GT 1 and PB 252) recommended to the state of São Paulo, Brazil, were studied in three different tapping systems. The parameters studied were dry rubber content (DRC), percentages of ash and of nitrogen, Wallace Plasticity (P0) and Mooney Viscosity (VR). The rubber properties vary considerably as a function of clone type, tapping method and season of the year. DRC tends to decrease in the beginning of the dry, cold season (May and June), whereas both nitrogen % and ash % increase in the same period. A good linear correlation was obtained for P0 and VR. The highest P0 and VR were obtained for RRIM 600.


1958 ◽  
Vol 31 (1) ◽  
pp. 82-85
Author(s):  
D. Barnard

Abstract The preparation of graft and block interpolymers of natural rubber and synthetic polymers has made it desirable that the number and size of polymer chains attached to rubber be readily determinate. The degradation of unsaturated polymers with tert-butyl hydroperoxide in the presence of osmium tet oxide has been used for the determination of free polystyrene in SBR and carbon black in several elastomers, and has recently been applied to the present problem. The accurate determination of the rubber content of interpolymers by quantitative ozonolysis essentially according to the method of Boer and Kooyman suggested that this might be made the basis of isolation of the attached polymer, the rubber being degraded into fragments of low molecular weight, from which the polymer could be separated by conventional techniques. The method should be applicable to any interpolymer, or mixture, of a polyunsaturated and a saturated polymer and is illustrated with reference to interpolymers of natural rubber (NR)-polymethyl methacrylate (PMM) and NR-polystyrene (PS).


2012 ◽  
Vol 501 ◽  
pp. 3-7
Author(s):  
Abu Bakar Rohani ◽  
Mustafa Kamal Mazlina ◽  
Fauzi Mohd Som

Natural rubber-grafted-poly(methyl methacrylate) containing 30 and 50 percent of methyl methacrylate (MMA) monomer per 100 parts by weight of the dry rubber content denoted as NR-g-PMMA 30 and NR-g-PMMA 50, respectively were prepared via emulsion polymerisation technique. The occurrences of graft copolymerisation of PMMA onto NR were confirmed by proton Nuclear Magnetic Resonance (1H NMR) and Fourier Transform Infrared (FTIR) following purifications. The reinforcement of rubber by fillers is of great practical and technical importance. Thus, these fillers are added to rubber formulations to optimize the properties to meet a given application or set of performance parameters. In this study, the effect of carbon black in NR-g-PMMA 30 and NR-g-PMMA 50 rubber compounds were evaluated. Our results demonstrated that tensile strength, elongation at break and compression set reduced, while the hardness and solvent resistance increased in the presence of carbon black filler in comparison to the unfilled compound.


1999 ◽  
Vol 72 (4) ◽  
pp. 673-683 ◽  
Author(s):  
V. A. Coveney ◽  
D. E. Johnson

Abstract Mathematical modeling of the dynamic behavior of vulcanizates is reviewed with the emphasis on carbon black filled natural rubber (NR). The 3 constant standard triboelastic solid (STS) model and its behavior are described, in general terms and with specific reference to low frequency shear data for a wide range of filled NR vulcanizates. Good general agreement is found between model and experiment for the data obtained at strain amplitudes down to 0.01; there is also acceptably good correlation between carbon black loading and values of STS constants. For previously published data down to very low strain amplitudes (1×10−4), agreement is much less satisfactory.


Sign in / Sign up

Export Citation Format

Share Document