scholarly journals ESTIMATIVA DE PODER CALORÍFICO E CARACTERIZAÇÃO PARA USO ENERGÉTICO DE RESÍDUOS DA COLHEITA E DO PROCESSAMENTO DE Pinus taeda

FLORESTA ◽  
2012 ◽  
Vol 42 (2) ◽  
pp. 325 ◽  
Author(s):  
Marina Moura de Souza ◽  
Dimas Agostinho Silva ◽  
Roberto Rochadelli ◽  
Rosimeire Cavalcante dos Santos

Este trabalho teve o objetivo de avaliar, mediante caracterização, o aproveitamento de resíduos florestais e madeireiros para fins energéticos. A obtenção dos materiais foi feita em uma empresa que realiza a colheita e o processamento da madeira de Pinus taeda L. situada no município de Tunas do Paraná, PR. Foram identificadas as fontes geradoras dos resíduos do processamento e procedeu-se à coleta dos materiais e do resíduo proveniente da colheita florestal. Os resíduos foram caracterizados de acordo com a umidade, poder calorífico, densidade e teores de carbono fixo e cinzas. Foi feito um ajuste de modelos matemáticos que pudessem expressar a relação entre umidade e poder calorífico para os materiais. As costaneiras e o resíduo da colheita apresentaram elevados teores de umidade e as costaneiras maior densidade e maior teor de carbono fixo. O teor de cinzas foi estatisticamente igual para todos os materiais. O poder calorífico superior se apresentou na faixa de 4.550 e 4.950 kcal/kg, e o poder calorífico útil (material úmido) para as costaneiras e os resíduos da colheita apresentou uma relevante queda, visto o elevado teor de umidade. O modelo de regressão selecionado pôde expressar em mais de 97% a relação entre poder calorífico e teor de umidade.Palavras-chave: Resíduos de madeira; uso energético; teor de umidade. AbstractCalorific Power estimate and characterization of residues from harvesting and processing of Pinus taeda for energy purposes. This study aimed to evaluate, by characterization, the use of forest and woody residues for energy purposes. The material was collected from a company engaged in wood harvesting and processing of Pinus taeda L., the sources of waste processing have been identified and  then it was collect the materials, as well as the residues from forest harvesting. The residues were characterized according to moisture, calorific value, density and levels that fixed carbon and ash. It was done a mathematical adjustment of models that could express the relation between moisture and caloric value for the materials. The slabs and crop residues presented high levels of humidity and the slabs had higher density and higher fixed carbon content. The ash content was statistically equal for all materials. The calorific value was between 4550 and 4950 kcal/kg; the useful calorific value for slabs and crop residues revealed an important decrease caused by high moisture content of these materials. The model of regression selected could express in more than 97% the relation between caloric value and of moisture content.Keywords: Forest residues; energetic use; moisture content.

2021 ◽  
Vol 13 (2) ◽  
pp. 190
Author(s):  
I Wayan Koko Suryawan ◽  
Ariyanti Sarwono ◽  
Iva Yenis Septiariva ◽  
Chun-Hung Lee

Highlight Research:The potential calorific value of marine debris obtained from calculating the total waste is 12.05 MJ/kg, which still falls within the incinerator application's standard criteria. AbstractMarine debris, a global environmental issue today, is a major threat to Bali’s seas which are famous for its natural beauty and aggravated by the spread of COVID-19 pandemic. This study aimed to determine the characteristics of marine debris in Bali Island, especially in the southern region and to analyze the feasibility of incineration as one of the waste treatment processes. This research was conducted by utilizing secondary data and literature reviews from related previous studies. Water content and caloric value were measured directly using the ASTM E 790-15 and ASTM D 5865-11a standards. Marine debris generation from 2013 to 2019 tends to decrease from 1.22 kg/km.day to 0.46 kg/km.day. Organic waste (59.4%) comprised the largest marine debris followed by plastic waste (13.4%) and diapers (11.9%). Thermal technology such as incineration can be introduced to treat marine debris. The standard application of incinerator technology is moisture content and caloric value. The water content of marine debris is reportedly 54.56%, therefore, further preliminary processing is needed, especially for waste with high moisture content, such as diapers and organic waste. The potential calorific value of marine debris during the COVID-19 pandemic obtained from calculating the total waste was 12.05 MJ/kg which still did not meet the incinerator application's standard criteria.


2019 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Syarifhidayahtullah Syarif ◽  
Rochim Bakti Cahyono ◽  
Muslikhin Hidayat

A B S T R A C TThe conversion of cocoa shell waste into char briquettes has been carried out through various methods. However, the product characteristics do not meet the SNI briquettes requirements. Therefore, it is necessary to improve process engineering by mixing cocoa peel waste with red fruit pulp to get char briquettes in order to improve quality of briquette products. This research was carried out through pyrolysis process with temperthwatures up to 500 oC and held for 4 hours. The research objective was to produce char briquettes from cacao pod shell waste with the addition of red fruit pulp and its characteristic test. The study was designed with 2 variables, namely independent variables in the form of char raw material powder that passed 50 mesh sieve, weight ratio of cocoa shell char powder and red fruit pulp char powder (100:0, 70:30, 50:50, 30:70, and 0%:100%), pressure (100 kg/cm2), 10% starch adhesive from raw materials, and briquette diameter of 40 mm. Whereas the dependent variables are the moisture content (%), volatile content (%), ash content (%), fixed carbon content (%), and calorific value (cal/g). The results showed that the process of pyrolysis of char briquettes waste cocoa shell with red fruit pulp can increase its calorific value. The best characteristics of briquette were obtained from mixed briquettes (composition of 30%:70%) with moisture content of 5.63%, volatile content of 18.65%, ash content of 9.45%, fixed carbon content of 66.27%, and calorific value of 6422 cal/g.A B S T R A KPemanfaatan limbah kulit buah kakao menjadi briket arang telah banyak dilakukan melalui berbagai metode tetapi belum memenuhi persyaratan SNI briket arang. Oleh karena itu, perlu diupayakan untuk mendapatkan briket arang yang memenuhi persyaratan SNI. Salah satunya dengan cara mencampurkan limbah kulit kakao dengan ampas buah merah karena ampas buah merah memiliki nilai kalor yang cukup tinggi. Penelitian ini dilakukan melalui proses pirolisis dengan suhu sampai dengan 500 oC  dan ditahan selama 4 jam. Tujuan penelitian untuk memproduksi briket arang dari limbah kulit buah kakao dengan penambahan ampas buah merah serta uji karakteristiknya. Penelitian dirancang dengan 2 variabel, yaitu variabel bebas (independent variable) berupa ukuran serbuk bahan baku arang yang lolos saringan  50 mesh, rasio massa campuran serbuk arang kulit kakao dengan serbuk arang ampas buah merah (100:0, 70:30, 50:50, 30:70, dan 0%:100%), tekanan pengempaan (100 kg/cm2), perekat kanji 10% dari bahan baku, dan diameter briket 40 mm. Variabel terikat (dependent variable) yang diukur yaitu kadar air (%), kadar zat mudah menguap (%), kadar abu (%), kadar karbon terikat (%), dan nilai kalor (kal/g). Hasil penelitian menunjukkan bahwa, dengan melalui proses pirolisis briket arang limbah kulit kakao dengan ampas buah merah dapat meningkatkan nilai kalor-nya. Karakteristik briket terbaik diperoleh dari briket komposisi campuran (30%:70%) dengan kadar air 5,63 %, kadar zat mudah menguap 18,65 %, kadar abu 9,45 %, kadar karbon terikat 66,27 %, dan nilai kalor 6422 kal/g.


Author(s):  
Rapheal Ige ◽  
Elinge Ogala ◽  
Cosmos Moki ◽  
Abdulrahman Habeeb

The selection or choice of agro-waste briquettes for domestic and industrial cottage applications depends on the fuel properties. In this study, the briquette was produced by carbonizing the rice stalk followed by crushing and sieving, the binder was prepared by dissolving the starch in hot water, then mixed with the sieved carbonized rice stalk and then the briquette was produced using the briquetting machine. Proximate analyses, viability, characteristics and combustion were determined to know the average composition of their constituents. From the results obtained it was observed that ash content, moisture content, after glow and ignition propagation decrease as the binder ratio increase while fixed carbon content, volatile matter, calorific value, density and compressive strength increase. The results of this work indicate that briquettes produced using high concentration of the binder would make good biomass fuels. However, it has a high moisture content of 25.00%, high ash content of 23.00%, moderate volatile matter of 44.80%, low fixed carbon content of 32.20%, moderate calorific value of 13.86 MJ/Kg and high density of 0.643g/cm3. The results obtained for all the parameters showed that rice stalks briquettes produced with high concentration of the binder (starch) had a better performance based on their combustion profile.


REAKTOR ◽  
2013 ◽  
Vol 14 (3) ◽  
pp. 247 ◽  
Author(s):  
Nyoman Jaya Wistara ◽  
Gokma Silaban ◽  
Gustan Pari

The main goal of the present works was to determine chemical changes, thermal decomposition, and the content of moisture, ash, volatile, fixed carbon and calorific value of soda pulping black liquor of the rice straw. Neutralized black liquor was dried to a moisture content of 10% and then pyrolized at 106oC-750oC. It was found that calorific value, fixed carbon, volatile mater, and moisture content were in the range of 2782-4716 cal/g, 49.2-81.6%, 15.5-47.5%, and 0.2-3.5%, respectively. Ash content was not influenced by the temperature of pyrolysis and was thought to depend on its initial silicate content. The weight loss of pulp was higher than that of black liquor. Extreme weight loss has been found in the temperature of 200-400oC. Noticeable functional groups changes were found with the increasing temperature of pyrolysis. Hydroxyl group completely disappeared at 300oC and above. Carbonyl related groups were also disappeared at 300-500oC, but it was reformed at 650 and 750oC. It might be brought about by the deformation of chemical bonding of oxygen ring in lignin structures. SIFAT-SIFAT ARANG LINDI HITAM DARI PEMASAKAN JERAMI DENGAN LARUTAN SODA API. Penelitian ini bertujuan untuk menentukan perubahan sifat kimia, dekomposisi termal dan kadar air, abu, zat terbang, karbon terikat serta nilai kalor arang lindi hitam pemasakan soda jerami padi. Dalam penelitian ini, lindi hitam netral dikeringkan (kadar air 10%), kemudian dipirolisis pada selang suhu 100-750oC di dalam reaktor berpengatur suhu. Hasil penelitian menunjukkan bahwa nilai kalor, karbon terikat, zat terbang dan kadar air masing-masing berselangdari 2782-4716 cal/g, 49,2-81,6%, 15,5-47,5%, dan 0,2-3,5%. Kadar abu tidak dipengaruhi oleh suhu pirolisis dan diduga bergantung pada kadar silika bahan bakunya. Nilai kalor meningkat dengan meningkatnya kadar karbon terikat. Perilaku kehilangan berat arang dari lindi hitam berbeda dengan perilaku kehilangan berat pulp jerami. Kehilangan berat pulp lebih tinggi dari kehilangan berat arang lindi hitam. Kehilangan berat yang tajam terjadi pada selang suhu 200-400oC. Perubahan gugus fungsi yang nyata terjadi dengan meningkatnya suhu pirolisis. Gugus hidroksil menghilang pada suhu 300oC atau lebih. Gugus terkarbonilasi menghilang pada suhu 300-500oC, tetapi terbentuk kembali pada suhu 650oC dan 750oC. Hal ini kemungkinan disebabkan oleh deformasi ikatan kimia oksigen di dalam cincin dari struktur lignin.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Assefa Tesfaye ◽  
Fentahun Workie ◽  
Venkatesh S. Kumar

Biomass energy accounts for more than 92 percent of overall energy consumption in Ethiopia. As a result, Ethiopia is one of the world’s most biomass-dependent countries. The high reliance on wood fuels and agricultural residues for fuel harms society’s social, economic, and environmental well-being. This study aims to create and test the quality of fuel briquettes made from the coffee husk. Also built and produced are a carboniser/charcoal kiln, a manually operated molder system, and a briquette stove for burning the manufactured briquette. The carboniser converts 15 kg of raw coffee husk into 6 kg of carbonised char in 25 minutes, and the manually operated briquette molder can press 30 kg per hour. The efficiency of converting raw coffee husk into carbonised char content was 40.12%. In the geological survey of Ethiopia, the geochemical laboratory directorate received triplicate samples of the fuel briquette charcoal for analysis. Moisture content, fixed carbon content, ash content, sulfur content, and calorific value were determined using a bomb calorimeter and a ceramic lining furnace. Physical properties of fuel briquettes ranged from 10.03% moisture content, 970 kg/m3 density, 81% fixed carbon, 5.15% ash content, 0% sulfur, and 30.54 Kcal/kg higher heating value, according to laboratory results. The results of the study revealed that the coffee husk fuel briquettes produced have more positive characteristics. Fuel briquettes were cost-effective and environmentally friendly and reduced deforestation compared to firewood. This study clearly shows that briquettes made from coffee husk could be used as an alternative energy source when this kind of waste is well managed.


2018 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Ratri Yuli Lestari, M.Env. ◽  
Dwi Harsono ◽  
Nazarni Rahmi

Altitude is one of the factors that affect the growth of bamboo. Bamboo species used in this study was Bambusa vulgaris and Arundinaria gigantea. The objectives of this study are to investigate the effect of altitude to the characteristics of bamboo charcoal harvested from three different altitudes (Lumpangi, Banjarbaru/Martapura, Marabahan). Parameters tested in this study were moisture content, ash content, volatile matter, fixed carbon and calorific value. The result showed that altitute significantly affected the characteristics of bamboo charcoal. Bamboo charcoal from Banjarbaru/Martapura had the best characteristics than the charcoal produced from other locations. The moisture content, ash content, volatile matter, fixed carbon and calorific value of B. vulgaris were 0.77 %; 3.49 %; 8.63 %; 87.11 % and 7,331.05 kal/g. The moisture content, ash content, volatile matter, fixed carbon and calorific value of A. gigantea were 0.19 %; 12.46 %; 4.48 %; 87.11 % and 6,640.69 kal/g, respectively.


2021 ◽  
Vol 14 (1) ◽  
pp. 33-39
Author(s):  
Muhamad Rizky Adipratama ◽  
Reza Setiawan ◽  
Najmudin Fauji

Biomass energy is one that can be used as an alternative energy as a substitute for fossil fuels and can also be useful for reducing environmental pollution due to increasing waste or waste. The manufacture of briquettes from chicken feather waste, wood shavings and rice husk waste aims to help deal with the problem of waste and use it as an alternative fuel. The making of briquettes is carried out by the process of drying the ingredients, charcoal, milling, sieving, kneading, printing, drying, proximate testing and measuring emissions on the briquettes. In this study, the composition of a mixture of chicken feathers (30%, 40%, 50%), wood shavings and rice husk (35%, 30%, 25%) was treated as well as particle sizes of 30 mesh and 60 mesh. The results of this study indicate that the lowest moisture content is in sample B2 of 4.5%. The lowest levels of volatile matters were in sample A1 of 37.4%. The lowest ash content was found in sample B3 at 10.8%. The highest fixed carbon was found in sample A3 at 45.1%. The highest calorific value (Gross Calorific Value) is found in the B3 sample of 5594 Kcal / Kg. And it has the highest CO, CO2, and HC emissions produced from the briquettes, namely 0.24%, 0.8%, 46 ppm. The properties of briquettes that have met SNI standards are moisture content, calorific value (except for sample A1), and the resulting emissions. And those that have not met SNI standards are the levels of volatile matter, ash content and fixed carbon. The resulting briquette can be used because the calorific value obtained is quiet high, which is above the specified standard of ≥ 5000 Kcal/Kg.


2021 ◽  
Vol 882 (1) ◽  
pp. 012029
Author(s):  
M A Rahmanta

Abstract The Coal Water Slurry (CWS) technology increases the calorific value and changes the phase of coal from solid to liquid. The CWS Plant with a coal capacity of 1.4 t/hour located at Karawang, West Java converts lignite coal to CWS. Coal undergoes pulverizing, upgrading, and slurry-making processes to become CWS. Pulverization is the process of refining coal size into 200 mesh. The upgrading process is through reducing the moisture content in heat exchangers (HE). It occurs in HE where the coal is pressurized to 15 MPa and the temperature is maintained at 330 0C for 30 minutes. The research objective was to determine the CWS characteristics of the South Sumatra Pendopo lignite coal. The method used is through testing where the Pendopo coal is converted into CWS at the CWS Plant. The result shows that Pendopo coal which has a heating value of High Heating Value (HHV) 2,725.00 kCal/kg As Received (AR) has an increase in HHV heating value of 3,218.00 kcal/kg AR when it becomes CWS. The total moisture content of Pendopo coal has decreased from 49.36% to 44.58% when it becomes CWS. The fixed carbon content of Pendopo coal increased from 19.78% AR to 24.01% AR.


2019 ◽  
Vol 693 (1) ◽  
pp. 7-17
Author(s):  
Krissina Camilla Molinari ◽  
Washington Luiz Esteves Magalhães ◽  
Agnieszka Pawlicka ◽  
Gilmara de Oliveira Machado

REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 183 ◽  
Author(s):  
Santiyo Wibowo ◽  
Ningseh Lestari

Peanut shells could be regarded as biomass wastes generated from agricultural products, which are abundantly available.  The current handling of those wastes is merely through direct incineration, without a proper and controlled manner. Consequently, it could arouse environmental concerns, such as air pollution and human respiratory diseases.  One alternative solution is converting those peanut shells to bio-pellet, expectedly applicable for fuels.  Relevantly, research on bio-pellet manufacture from peanut shells, previously treated with the torrefaction, was conducted. It’s aimed mainly to identify the fuel-related characteristics of bio-pellet products.  The tested bio-pellet parameters covered, moisture content, ash content, volatile matters, fixed carbon content, calorific values, and density.  The results revealed that torrefaction temperature and time at raw materials (peanut shells) could improve their qualities in regard to particular calorific value compared to those before such torrefaction; which referred to Indonesia’s Standard (SNI-8021-2014) for wood bio-pellet.  Further, torrefaction could increase bio-pellet quality which satisfied the SNI’s Standard, except for ash content.  Optimal torrefaction treatment was obtained at 300oC temperature for 60 minutes, whereby it achieved remarkable bio-pellet characteristics in terms of moisture content (3.092%), ash content (6.116%), volatile matters (38.387%), fixed carbon (55.447%), calorific value (6174 cal/g), and density (0.703 g/cm3). The torrefaction bio-pellets from peanut shells could achieve remarkable performances, with respect to fuel consumption rate (0.68 kg/hr), heating value (6174 kcal/kg), and thermal efficiency (16.67%).


Sign in / Sign up

Export Citation Format

Share Document