A Distal, High-grade Irish-type Orebody: Petrographic, Sulfur Isotope, and Sulfide Chemistry of the Island Pod Zn-Pb Orebody, Lisheen, Ireland

2021 ◽  
Author(s):  
Aileen L. Doran ◽  
Steven P. Hollis ◽  
Julian F. Menuge ◽  
Stephen J. Piercey ◽  
Adrian J. Boyce ◽  
...  

Abstract Irish-type Zn-Pb deposits are important global sources of zinc, but despite a fundamental understanding of ore genesis within the Irish orefield, a detailed understanding of fluid migration and chemical evolution pathways related to sulfide and carbonate precipitation is lacking. We present the first petrographic, paragenetically constrained sulfur isotope and mineral chemistry study of mineralization at the Island Pod orebody, Lisheen deposit. The Island Pod orebody comprises high-grade mineralization that is less deformed than elsewhere in the Irish orefield. Consequently, studies of the Island Pod orebody and its mineralization provide information on the evolving nature of hydrothermal fluids involved in ore deposition. The Island Pod orebody consists almost exclusively of pyrite, sphalerite, and galena, with several stages of calcite and dolomite precipitation. Pre-ore, diagenetic pyrite is commonly overgrown by early main ore-stage pyrite, with both phases frequently replaced by main ore-stage sphalerite. In many cases, early main ore-stage pyrite is texturally zoned and exhibits chemical zoning patterns, reflecting that episodic influxes of hydrothermal fluids contained variable concentrations of As, Co, Ni, and Tl. The main ore stage was dominated by the formation of sphalerite and galena from mineralizing fluids that were depleted in these trace elements (e.g., As, Co, Tl) compared to the early main ore stage. Sulfur isotope analysis reveals four distinctive but slightly overlapping isotopic groupings, corresponding to different mineral and paragenetic stages: (1) δ34S values range from –47.7 to –30.7‰, associated with diagenetic pyrite; (2) δ34S values range from –34.3 to –14.7‰, related to early main ore-stage pyrite; (3) δ34S values range from –15.5 to + 1.7‰, corresponding to main ore-stage sphalerite; and (4) δ34S values range from –11.1 to + 17.4‰, associated with galena. Large variations in S isotope composition are common at intragrain and at other small spatial scales. The textures, paragenetic sequence, and ranges in δ34S values are consistent with hydrothermal sulfide deposition where the fluids containing bacteriogenic sulfide mixed with metal-bearing fluids. Replacement and remobilization from other Lisheen orebodies may have contributed to some of the higher sulfur isotope ratios observed in the Island Pod orebody. The excellent preservation of sulfide textures in the Island Pod orebody observed during this study demonstrates that it is an ideal location to study hydrothermal fluid evolution, including episodic fluid flow, mixing, precipitation, and compositional variations during the early main ore stage. In other Irish Zn-Pb orebodies, these early-ore textures are often obscured due to more complex dissolution and replacement processes, making interpretation of the early hydrothermal activity challenging. Consequently, the petrographic, mineral chemistry, and sulfur isotope studies of the Island Pod orebody presented here contribute to an enhanced understanding of ore-forming processes in similar deposits, where mineralization is often associated with more complex deformation or repeated pulses of hydrothermal activity.

1989 ◽  
Vol 26 (4) ◽  
pp. 694-715 ◽  
Author(s):  
John F. Slack ◽  
Paul R. Coad

Tourmaline and chlorite are the principal ferromagnesian silicate minerals in the Kidd Creek massive sulphide deposit. Tourmaline is most common in sphalerite-rich peripheral margins of the chalcopyrite stringer zone. Within the north orebody, samples typically contain <1% tourmaline, but small areas (hand-specimen scale) may have 10–20%. Chlorite is more widely distributed and in places constitutes 30–50% of rock volumes. Associated assemblages may include quartz, sulphides (principally chalcopyrite, sphalerite, and (or) pyrite), carbonate, albite, sericite, and rare fluorite, allanite, or zoisite(?).The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidenced by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes.Detailed electron microprobe analyses of tourmalines show a wide compositional range, from Fe-rich dravite nearly to end-member schorl, with Fe/(Fe + Mg) ratios varying from 0.33 to 0.92; only minor amounts of Ca are present, yielding uniformly high Na/(Na + Ca) ratios of 0.84–0.99. Two sets of chemical zoning trends are identified in the tourmalines, involving systematic changes in Fe/(Fe + Mg), Na/(Na + Ca), Al, and Ti that are believed to reflect internal coupled substitutions (e.g.,  + Ti = Na + Al) and local mineral equilibria (e.g., tourmaline–chlorite). Analyses of the pale discordant reaction rims show consistent depletion of Fe, Ca, and Ti, presumably by fluid–solid reactions during post-ore metamorphism.Chlorites also show an extensive range in composition, from ripidolite nearly to end-member daphnite, with Fe/(Fe + Mg) ratios of 0.43–0.98 and Si cation values of 5.00–5.39. Chlorites from the fringes of the footwall stringer zone have narrow compositional ranges, whereas chlorites near footwall rhyolite sills in the core of the stringer zone display major variations in Fe/(Fe + Mg) ratios, including one sample with a range of 0.68–0.95. The former group of chlorites has Fe/(Fe + Mg) ratios that correlate well with those of coexisting tourmalines (exclusive of late reaction rims). Data for the latter group, in contrast, fall off equilibrium KD curves, indicating that the tourmalines and chlorites within these samples are not in chemical equilibrium. The chlorites are believed to have been altered (overprinted) by Fe-rich hydrothermal fluids apparently generated during intrusion of the rhyolite sills. The tourmalines, however, are unaffected and retain primary chemical signatures.Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. The major proposed control is mixing between high-temperature, Fe-rich end-member hydrothermal fluids and cold, Mg-rich entrained seawater. Fe/(Fe + Mg) variations in footwall tourmalines (and equilibrium chlorites) are believed to largely reflect the progressive infiltration of Mg-rich seawater into the margins and top of the hydrothermal system. The more Fe-rich compositions of Kidd Creek tourmalines relative to those from sediment-hosted massive sulphide deposits (e.g., Sullivan, British Columbia) may be related to the preferential generation of end-member hydrothermal fluids in proximal volcanic environments like that at Kidd Creek.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Frances M. Deegan ◽  
Martin J. Whitehouse ◽  
Valentin R. Troll ◽  
Harri Geiger ◽  
Heejin Jeon ◽  
...  

AbstractMagma plumbing systems underlying subduction zone volcanoes extend from the mantle through the overlying crust and facilitate protracted fractional crystallisation, assimilation, and mixing, which frequently obscures a clear view of mantle source compositions. In order to see through this crustal noise, we present intracrystal Secondary Ion Mass Spectrometry (SIMS) δ18O values in clinopyroxene from Merapi, Kelut, Batur, and Agung volcanoes in the Sunda arc, Indonesia, under which the thickness of the crust decreases from ca. 30 km at Merapi to ≤20 km at Agung. Here we show that mean clinopyroxene δ18O values decrease concomitantly with crustal thickness and that lavas from Agung possess mantle-like He-Sr-Nd-Pb isotope ratios and clinopyroxene mean equilibrium melt δ18O values of 5.7 ‰ (±0.2 1 SD) indistinguishable from the δ18O range for Mid Ocean Ridge Basalt (MORB). The oxygen isotope composition of the mantle underlying the East Sunda Arc is therefore largely unaffected by subduction-driven metasomatism and may thus represent a sediment-poor arc end-member.


Author(s):  
Mikael Vasilopoulos ◽  
Ferenc Molnár ◽  
Hugh O’Brien ◽  
Yann Lahaye ◽  
Marie Lefèbvre ◽  
...  

AbstractThe Juomasuo Au–Co deposit, currently classified as an orogenic gold deposit with atypical metal association, is located in the Paleoproterozoic Kuusamo belt in northeastern Finland. The volcano-sedimentary sequence that hosts the deposit was intensely altered, deformed, and metamorphosed to greenschist facies during the 1.93–1.76 Ga Svecofennian orogeny. In this study, we investigate the temporal relationship between Co and Au deposition and the relationship of metal enrichment with protolith composition and alteration mineralogy by utilizing lithogeochemical data and petrographic observations. We also investigate the nature of fluids involved in deposit formation based on sulfide trace element and sulfur isotope LA-ICP-MS data together with tourmaline mineral chemistry and boron isotopes. Classification of original protoliths was made on the basis of geochemically immobile elements; recognized lithologies are metasedimentary rocks, mafic, intermediate-composition, and felsic metavolcanic rocks, and an ultramafic sill. The composition of the host rocks does not control the type or intensity of mineralization. Sulfur isotope values (δ34S − 2.6 to + 7.1‰) and trace element data obtained for pyrite, chalcopyrite, and pyrrhotite indicate that the two geochemically distinct Au–Co and Co ore types formed from fluids of different compositions and origins. A reduced, metamorphic fluid was responsible for deposition of the pyrrhotite-dominant, Co-rich ore, whereas a relatively oxidized fluid deposited the pyrite-dominant Au–Co ore. The main alteration and mineralization stages at Juomasuo are as follows: (1) widespread albitization that predates both types of mineralization; (2) stage 1, Co-rich mineralization associated with chlorite (± biotite ± amphibole) alteration; (3) stage 2, Au–Co mineralization related to sericitization. Crystal-chemical compositions for tourmaline suggest the involvement of evaporite-related fluids in formation of the deposit; boron isotope data also allow for this conclusion. Results of our research indicate that the metal association in the Juomasuo Au–Co deposit was formed by spatially coincident and multiple hydrothermal processes.


1986 ◽  
Vol 64 (11) ◽  
pp. 2693-2699 ◽  
Author(s):  
Robert D. Guy ◽  
David M. Reid ◽  
H. Roy Krouse

Studies on various factors affecting the growth and stable carbon isotope composition of the graminaceous C3 halophyte Puccinellia nuttalliana (Schultes) Hitch. were initiated as a step towards interpreting δ13C variations in nature. For isotope analysis, combustion at 900 °C resulted in higher CO2 yield than at 550 °C but did not affect δ13C values. Differences in δ13C between leaves of different insertion level were unimportant, but roots were about 1‰ more positive than shoots. Trends in δ13C with salinity were the same in all plant parts. Depressions of growth by NaCl or Na2SO4 were similar, but plants grown in Na2SO4 displayed a greater shift in δ13C relative to controls. Growth rates were affected more by salinity than were previously reported photosynthetic rates. At typical salinities, δ13C changed linearly with salinity. The supply of nitrate to stressed and unstressed plants had no important influence on δ13C. Growth in polyethylene glycol produced δ13C values consistent with a high level of stress. After a salinity step-up, changes in δ13C were complete within 10 days. During winter, data were found to be heavily influenced by unintentional, human-respired CO2 enrichment. This represents a potentially serious research problem in laboratories of temperate climes.


2021 ◽  
Vol 59 (5) ◽  
pp. 1233-1259
Author(s):  
Claire Leighton ◽  
Daniel Layton-Matthews ◽  
Jan M. Peter ◽  
Michael G. Gadd ◽  
Alexandre Voinot ◽  
...  

ABSTRACT The MacMillan Pass district in Yukon, Canada, hosts the Tom and Jason clastic sediment-hosted Zn-Pb-Ag-(Ba) deposits. Pyrite-bearing drill core samples were collected from seven drill holes that intersected sulfide mineralization and time-stratigraphically equivalent rocks at varied spatial distances extending up to 3 km away from the deposits to assess the relative timing of pyrite mineralization and the chemistry of pyrite paragenesis. There are four pyrite morphologies: framboids and polyframboids (Py1), subhedral to euhedral inclusion-free crystals (Py2a), silicate inclusion-bearing nodules with serrated edges (Py2b), and euhedral idiomorphic overgrowths on preexisting pyrite morphologies (Py3). These morphological varieties correspond in time from syngenetic to earliest diagenetic growth (Py1), early to late diagenetic growth (Py2a, Py2b), and metamorphic crystallization and/or recrystallization of previous textural varieties (Py3). A representative subset of pyrite grains was analyzed for trace element contents and distributions by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Analyses by LA-ICP-MS reveal that each textural variety of pyrite has a distinct trace element composition that also varies depending on stratigraphic unit. A suite of clastic sediment-hosted sulfide mineralization-related elements was incorporated into Py2 within sulfide mineralized units at greater abundances than that in unmineralized units (e.g., Zn, As, Pb, Tl, Bi). Lead abundances and Pb/Se and As/Mo values in pyrite are the most robust vectoring tools documented. The timing for clastic sediment-hosted Zn-Pb mineralization was syn and/or post late diagenesis (Py2b). A Ba-enriched horizon was identified in rocks and this is interpreted to be the distal time-stratigraphic equivalent unit to Zn-Pb mineralization. The Ba-enriched horizon contains Py2 with anomalous metal (Tl, Co, Mn, Cd, Zn, Sb) contents and abundant macroscopic baryte, and it is interpreted to represent the distal expression of sulfide mineralization-forming hydrothermal activity. Four genetic models for mineralization are reviewed; however, the only model that is consistent with our whole rock and pyrite geochemistry involves venting of buoyant hydrothermal fluid, mixing with ambient seawater, and remaining or sinking into unconsolidated sediments, with lateral migration up to 2–3 km from the vent source.


2014 ◽  
Vol 11 (12) ◽  
pp. 3299-3305 ◽  
Author(s):  
C. Rumpel ◽  
V. Chaplot ◽  
P. Ciais ◽  
A. Chabbi ◽  
B. Bouahom ◽  
...  

Abstract. In order to assess whether eroded carbon is a net source or sink of atmospheric CO2, characterisation of the chemical composition and residence time of eroded organic matter (EOM) at the landscape level is needed. This information is crucial to evaluate (1) how fast EOM can be decomposed by soil microbes during its lateral transport and (2) its impact at deposition sites. This study considers a continuum of scales to measure the composition of EOM across a steep hillslope landscape of the Mekong basin with intense erosion. We sampled suspended sediments eroded during rainfall events from runoff plots (1 and 2.5 m2) and the outlets of four nested watersheds (0.6 × 104 to 1 × 107 m2). Here we show that changes in the chemical composition of EOM (measured by nuclear magnetic resonance spectroscopy) and in its 13C and 15N isotope composition from plot scale through to landscape scale provide consistent evidence for enrichment of more decomposed EOM across distances of 10 km. Between individual soil units (1 m2) to a small watershed (107 m2), the observed 28% decrease of the C/N ratio, the enrichment of 13C and 15N isotopes as well as O-alkyl C in EOM is of similar magnitude as changes recorded with depth in soil profiles due to soil organic matter "vertical" decomposition. Radiocarbon measurements indicated ageing of EOM from the plot to the watershed scale. Therefore transport of EOM may lead to enrichment of stabilised soil organic matter compounds, eventually being subject to export from the watershed.


Sign in / Sign up

Export Citation Format

Share Document