scholarly journals Study on Genetic Variance of miR-541 in Type 1 Diabetes

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Bei Han ◽  
Xing Shi ◽  
Quan Peng ◽  
Wentao Gao

Genetic susceptibility plays a key role in type 1 diabetes development. Because miR-541 gene was located within the associated chromosome loci and its target genes include the diabetes-associated gene neurogenin3, this study aimed to investigate whether miR-541 had type 1 diabetes-associated genetic variations. Type 1 diabetes children and healthy volunteers were recruited; direct sequencing was performed in initial 69 patients and 46 volunteers. We identified 1 reported SNP (rs12893725) and 3 novel genetic variations, for the candidate -404 G→T variation, restriction fragment length polymorphism (RFLP) was performed in total 247 diabetes children and 212 healthy volunteers, a different distribution trait of allele frequencies was found between the two groups, and further clinical analysis found no significant correlation between clinical parameter and genotypes among patients. In addition, by luciferase reporter assay, -404 was found to be within putative promoter region of pre-miR-541; although mutation of G→T has no effect on promoter activity, a significant secondary structure alteration may possibly influence its processing and transcription. In conclusion, we identified 3 novel genetic variations in putative promoter of miR-541 in type 1 diabetes patients; -404 G→T of miR-541 is a potential T1D-associated genetic variation.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257265
Author(s):  
Seung-Soo Kim ◽  
Adam D. Hudgins ◽  
Jiping Yang ◽  
Yizhou Zhu ◽  
Zhidong Tu ◽  
...  

Type 1 diabetes (T1D) is an organ-specific autoimmune disease, whereby immune cell-mediated killing leads to loss of the insulin-producing β cells in the pancreas. Genome-wide association studies (GWAS) have identified over 200 genetic variants associated with risk for T1D. The majority of the GWAS risk variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes substantially contribute to T1D. However, identification of causal regulatory variants associated with T1D risk and their affected genes is challenging due to incomplete knowledge of non-coding regulatory elements and the cellular states and processes in which they function. Here, we performed a comprehensive integrated post-GWAS analysis of T1D to identify functional regulatory variants in enhancers and their cognate target genes. Starting with 1,817 candidate T1D SNPs defined from the GWAS catalog and LDlink databases, we conducted functional annotation analysis using genomic data from various public databases. These include 1) Roadmap Epigenomics, ENCODE, and RegulomeDB for epigenome data; 2) GTEx for tissue-specific gene expression and expression quantitative trait loci data; and 3) lncRNASNP2 for long non-coding RNA data. Our results indicated a prevalent enhancer-based immune dysregulation in T1D pathogenesis. We identified 26 high-probability causal enhancer SNPs associated with T1D, and 64 predicted target genes. The majority of the target genes play major roles in antigen presentation and immune response and are regulated through complex transcriptional regulatory circuits, including those in HLA (6p21) and non-HLA (16p11.2) loci. These candidate causal enhancer SNPs are supported by strong evidence and warrant functional follow-up studies.


2021 ◽  
Vol 17 ◽  
Author(s):  
Farbod Bahreini ◽  
Elham Rayzan ◽  
Nima Rezaei

: Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be an influential step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cells formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.


2020 ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

AbstractThe transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present, but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice, but diminished in monoclonal models specific to artificial or neoantigens. Rationally-designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels, and reduced T cell infiltration and proinflammatory cytokine expression in newly-diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.~40-word summary statement for the online JEM table of contents and alertsKim and colleagues show that OCA-B in T cells is essential for the generation of type-1 diabetes. OCA-B loss leaves the pancreatic lymph nodes largely undisturbed, but associates autoreactive CD4+ T cells in the pancreas with anergy while deleting potentially autoreactive CD8+ T cells.SummaryKim et al. show that loss or inhibition of OCA-B in T cells protects mice from type-1 diabetes.


Author(s):  
Ning Liu ◽  
Timothy Sadlon ◽  
Ying Ying Wong ◽  
Stephen Pederson ◽  
James Breen ◽  
...  

AbstractBackgroundGenome-wide association and fine-mapping studies have enabled the discovery of single nucleotide polymorphisms (SNPs) and other variants that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the SNPs lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression.MethodsAutoimmunity results from a failure of immune tolerance, suggesting that regulatory T cells (Treg) are likely a significant point of impact for this genetic risk, as Treg are critical for immune tolerance. Focusing on T1D as a model of defective function of Treg in autoimmunity, we designed a SNPs filtering workflow called 3 Dimensional Functional Annotation of Accessible Cell Type Specific SNPs (3DFAACTS-SNP) that utilises overlapping profiles of Treg-specific epigenomic data (ATAC-seq, Hi-C and FOXP3-ChIP) to identify regulatory elements potentially driving the effect of variants associated with T1D, and the gene(s) that they control.ResultsUsing 3DFAACTS-SNP we identified 36 SNPs with plausible Treg-specific mechanisms of action contributing to T1D from 1,228 T1D fine-mapped variants, identifying 119 novel interacting regions resulting in the identification of 51 candidate target genes. We further demonstrated the utility of the workflow by applying it to three other fine-mapped/meta-analysed SNP autoimmune datasets, identifying 17 Treg-centric candidate variants and 35 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of any genetic variation using all common (>10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 7,900 candidate variants and 3,245 candidate target genes, generating a list of potential sites for future T1D or autoimmune research.ConclusionsWe demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function and illustrate the power of using cell type specific multi-omics datasets to determine disease mechanisms. The 3DFAACTS-SNP workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility.


2015 ◽  
Vol 291 (2) ◽  
pp. 891-903 ◽  
Author(s):  
Tatjana Sjakste ◽  
Natalia Paramonova ◽  
Kristine Osina ◽  
Kristine Dokane ◽  
Jelizaveta Sokolovska ◽  
...  

Author(s):  
О.С. Глотов ◽  
Е.А. Серебрякова ◽  
М.Е. Туркунова ◽  
Е.Б. Башнина ◽  
А.С. Глотов ◽  
...  

Исследованы образцы ДНК 60 пациентов с подозрением на наличие моногенного сахарного диабета (МСД-MODY) путем секвенирования NGS панели 13 генов MODY и 22 гена «неонатального» диабета и синдромальных форм диабета. МСД был подтвержден у 55% (n=33). Из 33 пациентов 27 (81,8%) имели мутации (варианты) в MODY генах. Наиболее часто встречались варианты в гене GCK-31,6% (n=19). Спектр вариантов в гене GCK включал 13 миссенс мутаций, 3 нонсенс, 4 со сдвигом рамки считывания и 1 в промоторной области. Были также выявлены варианты в других генах: HNF1A (n=3), WFS1(n=4), PAX4 (n=1), EIF2AK3 (n=1, гомозигота), GATA6 (n=1), KCNJ11(n=1), ABCC8 (n=1), SLC19A2 (n=2), BLK (n=2). Из 38 детектированных вариантов 15 оказались новыми. Высокая выявляемость может быть связана как с особенностями нашей группы, так и с использованным биоинформатическим подходом. Молекулярно-генетическая верификация диагноза при помощи NGS секвенирования позволяет повысить эффективность диагностики, прогнозировать течение заболевания и вносить коррективы в лечение СД. The present study included 60 unrelated Russian children with non-type 1 diabetes mellitus diagnosed before the age of 18 years. Genetic variants were analyzed using whole-exome sequencing (WES) in a panel of 35 genes causative of maturity onset diabetes of the young (MODY) and transient or permanent neonatal diabetes. Verification of the WES results was performed using PCR-direct sequencing. A total of 38 genetic variants were identified in 33 out of 60 patients (55%). The majority of patients (27/33, 81.8%) had variants in MODY-related genes: GCK (n=19), HNF1A (n=2), PAX4 (n=1), ABCC8 (n=1), KCNJ11 (n=1), GCK+HNF1A (n=1), GCK+BLK (n=1) and GCK+BLK+WFS1 (n=1). A total of 6 patients (6/33, 18.2%) had variants in MODY-unrelated genes: GATA6 (n=1), WFS1 (n=3), EIF2AK3 (n=1) and SLC19A2 (n=1). A total of 15 out of 38 variants were novel, including GCK, HNF1A, BLK, WFS1, EIF2AK3 and SLC19A2. To summarize, the present study demonstrates a high frequency and a wide spectrum of genetic variants causative of monogenic diabetes in Russian children with non-type 1 diabetes mellitus. The spectrum includes previously known and novel variants in MODY-related and unrelated genes, with multiple variants in a number of patients. The prevalence of GCK variants indicates that diagnostics of monogenic diabetes in Russian children may begin with testing for MODY2. However, the remaining variants are present at low frequencies in 9 different genes, altogether amounting to ~50% of the cases and highlighting the efficiency of using WES in non-GCK-MODY cases.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel Ho ◽  
Denis M. Nyaga ◽  
William Schierding ◽  
Richard Saffery ◽  
Jo K. Perry ◽  
...  

AbstractType 1 diabetes (T1D) etiology is complex. We developed a machine learning approach that ranked the tissue-specific transcription regulatory effects for T1D SNPs and estimated their relative contributions to conversion to T1D by integrating case and control genotypes (Wellcome Trust Case Control Consortium and UK Biobank) with tissue-specific expression quantitative trait loci (eQTL) data. Here we show an eQTL (rs6679677) associated with changes to AP4B1-AS1 transcript levels in lung tissue makes the largest gene regulatory contribution to the risk of T1D development. Luciferase reporter assays confirmed allele-specific enhancer activity for the rs6679677 tagged locus in lung epithelial cells (i.e. A549 cells; C > A reduces expression, p = 0.005). Our results identify tissue-specific eQTLs for SNPs associated with T1D. The strongest tissue-specific eQTL effects were in the lung and may help explain associations between respiratory infections and risk of islet autoantibody seroconversion in young children.


2013 ◽  
Vol 74 (1) ◽  
pp. 36-39 ◽  
Author(s):  
Lan Liu ◽  
Jiping Mao ◽  
Zeyuan Lu ◽  
Xiaojie Yan ◽  
Yiyi Ye ◽  
...  

2020 ◽  
Vol 33 (10) ◽  
pp. 1674-1682
Author(s):  
Hongwei Geng ◽  
Linlin Hao ◽  
Yunyun Cheng ◽  
Chunli Wang ◽  
Wenzhen Wei ◽  
...  

Objective: This study aimed to elucidate the effect of miR-140 on the proliferation of porcine fetal fibroblasts (PFFs) and identify the target genes of miR-140 in PFFs.Methods: In this study, bioinformatics software was used to predict and verify target genes of miR-140. Quantitative polymerase chain reaction and western blot were used to detect the relationship between miR-140 and its target genes in PFFs. Dual luciferase reporter gene assays were performed to assess the interactions among miR-140, type 1 insulinlike growth factor receptor (IGF1R), and SRY-box 4 (SOX4). The effect of miR-140 on the proliferation of PFFs was measured by CCK-8 when PFFs were transfected with a miR-140 mimic or inhibitor. The transcription factor SOX4 binding to promoter of IGF1R was detected by chromatin immunoprecipitation assay (ChIP).Results: miR-140 directly targeted IGF1R and inhibited proliferation of PFFs. Meanwhile, miR-140 targeted transcription factor SOX4 that binds to promoter of porcine IGF1R to indirectly inhibit the expression of IGF1R. In addition, miR-140 inhibitor promoted PFFs proliferation, which is abrogated by SOX4 or IGF1R knockdown.Conclusion: miR-140 inhibited PFFs proliferation by directly targeting IGF1R and indirectly inhibiting IGF1R expression via SOX4, which play an important role in the development of porcine fetal.


Sign in / Sign up

Export Citation Format

Share Document