scholarly journals New Aspects in Immunopathology of Mycobacterium tuberculosis

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
E. Mortaz ◽  
M. Varahram ◽  
P. Farnia ◽  
M. Bahadori ◽  
MR Masjedi

Our understanding of tuberculosis (TB) pathology and immunology has become extensively deeper and more refined since the identification of Mycobacterium tuberculosis (MTB) as the etiologic agent of disease by Dr. Robert Koch in 1882. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. TB, caused by MTB, is a major health problem in world, with 10 million new cases diagnosed each year. Innate immunity is shown playing an important role in the host defense against the MTB, and the first step in this process is recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the recognition of MTB, including toll-like receptors (TLRs), C-type lectin receptors (CLRs), and nod-like receptors (NLRs). Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down streams, proteins play the most prominent roles in the initiation of the immune response against MTB. Beside of TLRs signaling, recently the activation of inflammasome pathway in the pathogenesis of TB much appreciated. Knowledge about these signaling pathways is crucial for understanding the pathophysiology of TB, on one hand, and for the development of novel strategies of vaccination and treatment such as immunotherapy on the other. Given the critical role of TLRs/inflammasome signaling in innate immunity and initiation of the appropriate adaptive response, the regulation of these pathways is likely to be an important determinant of the clinical outcome of MTB infection. In this review paper we focused on the immune response, which is the recognition of MTB by inflammatory innate immune cells following infection.

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Mohlopheni Jackson Marakalala ◽  
Lisa M. Graham ◽  
Gordon D. Brown

There is increasing interest in understanding the mechanisms underlying the interactions that occur betweenMycobacterium tuberculosisand host innate immune cells. These cells express pattern recognition receptors (PRRs) which recognise mycobacterial pathogen-associated molecular patterns (PAMPs) and which can influence the host immune response to the infection. Although many of the PRRs appear to be redundant in the control ofM. tuberculosisinfectionin vivo, recent discoveries have revealed a key, nonredundant, role of the Syk/CARD9 signalling pathway in antimycobacterial immunity. Here we review these discoveries, as well as recent data investigating the role of the Syk/CARD9-coupled PRRs that have been implicated in mycobacterial recognition, including Dectin-1 and Mincle.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Jingjing Wang ◽  
Huiyi Li ◽  
Binbin Xue ◽  
Rilin Deng ◽  
Xiang Huang ◽  
...  

ABSTRACT Innate immunity is an essential way for host cells to resist viral infection through the production of interferons (IFNs) and proinflammatory cytokines. Interferon regulatory factor 3 (IRF3) plays a critical role in the innate immune response to viral infection. However, the role of IRF1 in innate immunity remains largely unknown. In this study, we found that IRF1 is upregulated through the IFN/JAK/STAT signaling pathway upon viral infection. The silencing of IRF1 attenuates the innate immune response to viral infection. IRF1 interacts with IRF3 and augments the activation of IRF3 by blocking the interaction between IRF3 and protein phosphatase 2A (PP2A). The DNA binding domain (DBD) of IRF1 is the key functional domain for its interaction with IRF3. Overall, our study reveals a novel mechanism by which IRF1 promotes the innate immune response to viral infection by enhancing the activation of IRF3, thereby inhibiting viral infection. IMPORTANCE The activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. IRF3 plays a critical role in the innate immune response to RNA viral infection. However, whether IRF1 plays a role in innate immunity is unclear. In this study, we demonstrated that IRF1 promotes the innate immune response to viral infection. IRF1 is induced by viral infection. Notably, IRF1 targets and augments the phosphorylation of IRF3 by blocking the interaction between IRF3 and PP2A, leading to the upregulation of innate immunity. Collectively, the results of our study provide new insight into the regulatory mechanism of IFN signaling and uncover the role of IRF1 in the positive regulation of the innate immune response to viral infection.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenjin Zheng ◽  
Qing Xu ◽  
Yiyuan Zhang ◽  
Xiaofei E ◽  
Wei Gao ◽  
...  

Abstract Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


2020 ◽  
Vol 48 (3) ◽  
pp. 1213-1225 ◽  
Author(s):  
Tae Kang Kim ◽  
Myung-Shik Lee

The importance of innate immunity in host defense and inflammatory responses has been clearly demonstrated after the discovery of innate immune receptors such as Toll-like receptors (TLRs) or Nucleotide-binding oligomerization domain-containing protein (Nod)-like receptors (NLRs). Innate immunity also plays a critical role in diverse pathological conditions including autoimmune diseases such as type 1 diabetes (T1D). In particular, the role of a variety of innate immune receptors in T1D has been demonstrated using mice with targeted disruption of such innate immune receptors. Here, we discuss recent findings showing the role of innate immunity in T1D that were obtained mostly from studies of genetic mouse models of innate immune receptors. In addition, the role of innate immune receptors involved in the pathogenesis of T1D in sensing death-associated molecular patterns (DAMPs) released from dead cells or pathogen-associated molecular patterns (PAMPs) will also be covered. Elucidation of the role of innate immune receptors in T1D and the nature of DAMPs sensed by such receptors may lead to the development of new therapeutic modalities against T1D.


2021 ◽  
Vol 118 (42) ◽  
pp. e2103526118
Author(s):  
Lingfang Zhu ◽  
Lei Xu ◽  
Chenguang Wang ◽  
Changfu Li ◽  
Mengyuan Li ◽  
...  

Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+. Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.


ExRNA ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Ava Behrouzi ◽  
Marjan Alimohammadi ◽  
Amir Hossein Nafari ◽  
Mohammad Hadi Yousefi ◽  
Farhad Riazi Rad ◽  
...  

Abstract MicroRNAs are non-coding RNAs, playing an important role in regulating many biological pathways, such as innate immune response against various infections. Different studies confirm that many miRNAs act as important regulators in developing a strategy for the survival of Mycobacterium tuberculosis in the host cell. On the other hand, an innate immune response is one of the important aspects of host defense against Mycobacterium. Considering the importance of miRNAs during tuberculosis infection, we focused on studies that performed on the role of various miRNAs related to pathogenic bacteria, M. tuberculosis in the host. Also, we have introduced important miRNAs that can be used as a biomarker for the detection of Mycobacterium.


Sign in / Sign up

Export Citation Format

Share Document