Is increased rho kinase activity/oxidative stress relationship the missing link for linezolid-induced thrombocytopenia in dialysis patients?

Author(s):  
Luca Sgarabotto ◽  
Laura Gobbi ◽  
Lorenzo A. Calò
2022 ◽  
Vol 11 (2) ◽  
pp. 402
Author(s):  
Matteo Rigato ◽  
Gianni Carraro ◽  
Irene Cirella ◽  
Silvia Dian ◽  
Valentina Di Di Vico ◽  
...  

Autosomal dominant polycystic disease (ADPKD) is the most frequent monogenic kidney disease. It causes progressive renal failure, endothelial dysfunction, and hypertension, all of which are strictly linked to oxidative stress (OxSt). Treatment with tolvaptan is known to slow the renal deterioration rate, but not all the molecular mechanisms involved in this effect are well-established. We evaluated the OxSt state in untreated ADPKD patients compared to that in tolvaptan-treated ADPKD patients and healthy subjects. OxSt was assessed in nine patients for each group in terms of mononuclear cell p22phox protein expression, NADPH oxidase key subunit, MYPT-1 phosphorylation state, marker of Rho kinase activity (Western blot) and heme oxygenase (HO)-1, induced and protective against OxSt (ELISA). p22phox protein expression was higher in untreated ADPKD patients compared to treated patients and controls: 1.42 ± 0.11 vs. 0.86 ± 0.15 d.u., p = 0.015, vs. 0.53 ± 0.11 d.u., p < 0.001, respectively. The same was observed for phosphorylated MYPT-1: 0.96 ± 0.28 vs. 0.68 ± 0.09 d.u., p = 0.013 and vs. 0.47 ± 0.13 d.u., p < 0.001, respectively, while the HO-1 expression of untreated patients was significantly lower compared to that of treated patients and controls: 5.33 ± 3.34 vs. 2.08 ± 0.79 ng/mL, p = 0.012, vs. 1.97 ± 1.22 ng/mL, p = 0.012, respectively. Tolvaptan-treated ADPKD patients have reduced OxSt levels compared to untreated patients. This effect may contribute to the slowing of renal function loss observed with tolvaptan treatment.


2011 ◽  
Vol 57 (14) ◽  
pp. E566
Author(s):  
Luigi Gabrielli ◽  
Jorge Jalil ◽  
María P. Ocaranza ◽  
Ulises Novoa ◽  
Italo Mora ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Claudio Cantin ◽  
Jorge E. Jalil ◽  
Juan F. Bulnes ◽  
Ulises Novoa ◽  
Paul MacNab ◽  
...  

Background: Angiotensin II is a potent activator of the Rho-kinase (ROCK) pathway, through which it exerts some of its adverse vasoconstrictor effects. Clinical evidence on the effects of blocking the angiotensin II receptor 1 on ROCK activity in hypertensive patients is scarce. Objective: To demonstrate that ROCK activity in peripheral blood mononuclear cells (PMBCs) in patients with essential hypertension is reduced earlier than previously observed, along with blood pressure (BP) lowering on treatment with olmesartan. Methods: Prospective pilot open study; 17 hypertensive patients were treated with progressive olmesartan doses starting with 20 mg qd. BP was measured at 3, 6 and 9 weeks after treatment initiation. If treatment failed to normalize BP after 3 weeks, olmesartan dose was increased to 40 mg qd, and if still hypertensive after 6 weeks, 12.5 mg of hydrochlorothiazide qd was added. ROCK activity was measured at baseline and 9 weeks after treatment as myosin phosphatase target subunit 1 phosphorylation (MYPT1-p/T ratio) in PBMC. Results: Mean baseline BP was 162 ± 4.9/101 ± 2.4 mmHg. After 9 weeks of treatment, both systolic and diastolic BP were reduced by 41 and 22 mmHg, respectively (p<0.05). Mean pretreatment MYPT1- p/T ratio in PMBCs was significantly reduced by 80% after 9 weeks with olmesartan (p<0.01). Conclusion: Normotension achieved after 9 weeks in 82% of the patients treated with olmesartan was associated with a significant reduction of ROCK activity in PBMC.


Author(s):  
Patricia Tomás-Simó ◽  
Luis D’Marco ◽  
María Romero-Parra ◽  
Mari Carmen Tormos-Muñoz ◽  
Guillermo Sáez ◽  
...  

Background: Cardiovascular complications are the leading cause of morbidity and mortality at any stage of chronic kidney disease (CKD). Moreover, the high rate of cardiovascular mortality observed in these patients is associated with an accelerated atherosclerosis process that likely starts at the early stages of CKD. Thus, traditional and non-traditional or uremic-related factors represent a link between CKD and cardiovascular risk. Among non-conventional risk factors, particular focus has been placed on anaemia, mineral and bone disorders, inflammation, malnutrition and oxidative stress and, in this regard, connections have been reported between oxidative stress and cardiovascular disease in dialysis patients. Methods: We evaluated the oxidation process in different molecular lines (proteins, lipids and genetic material) in 155 non-dialysis patients at different stages of CKD and 45 healthy controls. To assess oxidative stress status, we analyzed oxidized glutathione (GSSG), reduced glutathione (GSH) and the oxidized/reduced glutathione ratio (GSSG/GSH) and other oxidation indicators, including malondialdehyde (MDA) and 8-oxo-2’-deoxyguanosine (8-oxo-dG). Results: An active grade of oxidative stress was found from the early stages of CKD onwards, which affected all of the molecular lines studied. We observed a heightened oxidative state (indicated by a higher level of oxidized molecules together with decreased levels of antioxidant molecules) as kidney function declined. Furthermore, oxidative stress-related alterations were significantly greater in CKD patients than in the control group. Conclusions: CKD patients exhibit significantly higher oxidative stress than healthy individuals, and these alterations intensify as eGFR declines, showing significant differences between CKD stages. Thus, future research is warranted to provide clearer results in this area.


2021 ◽  
Author(s):  
Erdem Çankaya ◽  
Yusuf Bilen ◽  
Abdullah Uyanık ◽  
Hasan Dogan ◽  
Ahmet Kızıltunç ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 204 ◽  
Author(s):  
Marina Sycheva ◽  
Jake Sustarich ◽  
Yuxian Zhang ◽  
Vaithinathan Selvaraju ◽  
Thangiah Geetha ◽  
...  

We have previously shown that the expression of pro-nerve growth factor (proNGF) was significantly increased, nerve growth factor (NGF) level was decreased, and the expression of p75NTR was enhanced in Alzheimer’s disease (AD) hippocampal samples. NGF regulates cell survival and differentiation by binding TrkA and p75NTR receptors. ProNGF is the precursor form of NGF, binds to p75NTR, and induces cell apoptosis. The objective of this study is to determine whether the increased p75NTR expression in AD is due to the accumulation of proNGF and Rho kinase activation. PC12 cells were stimulated with either proNGF or NGF. Pull-down assay was carried out to determine the RhoA kinase activity. We found the expression of p75NTR was enhanced by proNGF compared to NGF. The proNGF stimulation also increased the RhoA kinase activity leading to apoptosis. The expression of active RhoA kinase was found to be increased in human AD hippocampus compared to control. The addition of RhoA kinase inhibitor Y27632 not only blocked the RhoA kinase activity but also reduced the expression of p75NTR receptor and inhibited the activation of JNK and MAPK induced by proNGF. This suggests that overexpression of proNGF in AD enhances p75NTR expression and activation of RhoA, leading to neuronal cell death.


2013 ◽  
Vol 304 (5) ◽  
pp. G527-G535 ◽  
Author(s):  
Senthilkumar Rajagopal ◽  
Divya P. Kumar ◽  
Sunila Mahavadi ◽  
Sayak Bhattacharya ◽  
Ruizhe Zhou ◽  
...  

The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.


Sign in / Sign up

Export Citation Format

Share Document